Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

Related tags

Deep LearningLANKA
Overview

LANKA

This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper)

Reference

If this repository helps you, please kindly cite the following bibtext:

@inproceedings{cao-etal-2021-knowledgeable,
    title = "Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases",
    author = "Cao, Boxi  and
      Lin, Hongyu  and
      Han, Xianpei  and
      Sun, Le  and
      Yan, Lingyong  and
      Liao, Meng  and
      Xue, Tong  and
      Xu, Jin",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.146",
    pages = "1860--1874",

Usage

To reproduce our results:

1. Create conda environment and install requirements

git clone https://github.com/c-box/LANKA.git
cd LANKA
conda create --name lanka python=3.7
conda activate lanka
pip install -r requirements.txt

2. Download the data

3. Run the experiments

If your GPU is smaller than 24G, please adjust batch size using "--batch-size" parameter.

3.1 Prompt-based Retrieval

  • Evaluate the precision on LAMA and WIKI-UNI using different prompts:

    • Manually prompts created by Petroni et al. (2019)

      python -m scripts.run_prompt_based --relation-type lama_original --model-name bert-large-cased --method evaluation --cuda-device [device] --batch-size [batch_size]
    • Mining-based prompts by Jiang et al. (2020b)

      python -m scripts.run_prompt_based --relation-type lama_mine --model-name bert-large-cased --method evaluation --cuda-device [device]
    • Automatically searched prompts from Shin et al. (2020)

      python -m scripts.run_prompt_based --relation-type lama_auto --model-name bert-large-cased --method evaluation --cuda-device [device]
  • Store various distributions needed for subsequent experiments:

    python -m scripts.run_prompt_based --model-name bert-large-cased --method store_all_distribution --cuda-device [device]
  • Calculate the average percentage of instances being covered by top-k answers or predictions (Table 1):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method topk_cover --cuda-device [device]
  • Calculate the Pearson correlations of the prediction distributions on LAMA and WIKI-UNI (Figure 3, the figures will be stored in the 'pics' folder):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prediction_corr --cuda-device [device]
  • Calculate the Pearson correlations between the prompt-only distribution and prediction distribution on WIKI-UNI (Figure 4):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prompt_only_corr --cuda-device [device]
  • Calculate the KL divergence between the prompt-only distribution and golden answer distribution of LAMA (Table 2):

    python -m scripts.run_prompt_based --relation-type [relation_type] --model-name bert-large-cased --method cal_prompt_only_div --cuda-device [device]

3.2 Case-based Analogy

  • Evaluate case-based paradigm:

    python -m scripts.run_case_based --model-name bert-large-cased --task evaluate_analogy_reasoning --cuda-device [device]
  • Detailed comparison for prompt-based and case-based paradigms (precision, type precision, type change, etc.) (Table 4):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_precision --cuda-device [device]
  • Calculate the in-type rank change (Figure 6):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_rank_change --cuda-device [device]

3.3 Context-based Inference

  • For explicit answer leakage (Table 5 and 6):

    python -m scripts.run_context_based --model-name bert-large-cased --method explicit_leak --cuda-device [device]
  • For implicit answer leakage (Table 7):

    python -m scripts.run_context_based --model-name bert-large-cased --method implicit_leak --cuda-device [device]
Owner
Boxi Cao
NLP
Boxi Cao
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022