ONNX Command-Line Toolbox

Overview

ONNX Command Line Toolbox

Build and Test CodeQL Sanity Coverage

  • Aims to improve your experience of investigating ONNX models.
  • Use it like onnx infershape /path/to/model.onnx. (See the usage section for more.)

Installation

Recommand to install via GitHub repo for the latest functionality.

pip install git+https://github.com/jackwish/onnxcli.git

Two alternative ways are:

  1. Install via pypi package pip install onnxcli
  2. Download and add the code tree to your $PYTHONPATH. This is for development purpose since the command line is different.
    git clone https://github.com/jackwish/onnxcli.git
    export PYTHONPATH=$(pwd)/onnxcli:${PYTHONPATH}
    python onnxcli/cli/dispatcher.py <more args>
    

The onnx draw requires dot command (graphviz) to be avaiable on your machine - which can be installed by command as below on Ubuntu/Debian.

sudo apt install -y graphviz

Usage

Once installed, the onnx and onnxcli commands are avaiable on your machine. You can play with commands such as onnx infershape /path/to/model.onnx. The general format is onnx <sub command> <dedicated arguments ...>. The sub commands are as sections below.

Check the online help with onnx --help and onnx <subcmd> --help for latest usage.

infershape

onnx infershape performs shape inference of the ONNX model. It's an CLI wrapper of onnx.shape_inference. You will find it useful to generate shape information for the models that are extracted by onnx extract.

extract

onnx extract extracts the sub model that is determined by the names of the input and output tensor of the subgraph from the original model. It's a CLI wrapper of onnx.utils.extract_model (which I authorized in the ONNX repo).

inspect

onnx inspect gives you quick view of the information of the given model. It's inspired by the tf-onnx tool.

When working on deep learning, you may like to take a look at what's inside the model. Netron is powerful but doesn't provide fine-grain view.

With onnx inspect, you no longer need to scroll the Netron window to look for nodes or tensors. Instead, you can dump the node attributes and tensor values with a single command.

Click here to see a node example

$ onnx inspect ./assets/tests/conv.float32.onnx --node --indices 0 --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Node information: Node "output": type "Conv", inputs "['input', 'Variable/read', 'Conv2D_bias']", outputs "['output']" attributes: [name: "dilations" ints: 1 ints: 1 type: INTS , name: "group" i: 1 type: INT , name: "kernel_shape" ints: 3 ints: 3 type: INTS , name: "pads" ints: 1 ints: 1 ints: 1 ints: 1 type: INTS , name: "strides" ints: 1 ints: 1 type: INTS ]

Click here to see a tensor example

$ onnx inspect ./assets/tests/conv.float32.onnx --tensor --names Conv2D_bias --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Tensor information: Initializer "Conv2D_bias": type FLOAT, shape [16], float data: [0.4517577290534973, -0.014192663133144379, 0.2946248948574066, -0.9742919206619263, -1.2975586652755737, 0.7223454117774963, 0.7835700511932373, 1.7674627304077148, 1.7242872714996338, 1.1230682134628296, -0.2902531623840332, 0.2627834975719452, 1.0175092220306396, 0.5643373131752014, -0.8244842290878296, 1.2169424295425415]

draw

onnx draw draws the graph in dot, svg, png formats. It gives you quick view of the type and shape of the tensors that are fed to a specific node. You can view the model topology in image viewer of browser without waiting for the model to load, which I found is really helpful for large models.

If you are viewing svg in browser, you can even quick search for the nodes and tensors. Together with onnx inspect, it will be very efficient to understand the issue you are looking into.

The node are in ellipses and tensors are in rectangles where the rounded ones are initializers. The node type of the node and the data type and shape of the tenors are also rendered. Here is a Convolution node example.

conv

Contributing

Welcome to contribute new commands or enhance them. Let's make our life easier together.

The workflow is pretty simple:

  1. Starting with GitHub Codespace or clone locally.
  • make setup to config the dependencies (or pip install -r ./requirements.txt if you prefer).
  1. Create a new subcommand
  • Starting by copying and modifying infershape.
  • Register the command in the dispatcher
  • Create a new command line test
  • make test to build and test.
  • make check and make format to fix any code style issues.
  1. Try out, debug, commit, push, and open pull request.
  • The code has been protected by CI. You need to get a pass before merging.
  • Ask if any questions.

License

Apache License Version 2.0.

Comments
  • Some ONNX models don't list activation tensors in GraphProto.value_info

    Some ONNX models don't list activation tensors in GraphProto.value_info

    They should, but they don't. I am not sure why such models behave like this - they cannot pass the ONNX model checker.

    There should be something wrong with the exporter. I can try to figure out which exporter has such issues.

    For onnxcli, any functionality depending on walking GraphProto.value_info may not show the real model. This is not our defect, but the models'. To workaround, you can firstly run shape inference on the model, and the GraphProto.value_info listing issue will be fixed.

    onnx infershape /path/to/input/model /path/to/output/model
    
    documentation 
    opened by zhenhuaw-me 2
  • Integrate the onnx dumper

    Integrate the onnx dumper

    src: https://github.com/onnx/tensorflow-onnx/blob/master/tools/dump-onnx.py

    most of them need to be renamed.

    • [x] inspect to check the model
    • [x] dump dot has high priotiry
    • [ ] print to std if no file specified
    opened by zhenhuaw-me 0
  • Optimizer reports

    Optimizer reports "Unresolved value references" since v0.3.0

    Via pipeline https://github.com/zhenhuaw-me/onnxcli/actions/runs/3453474851/jobs/5764096907.

    A simple model works no issue till optimizer v0.2.7 (verified locally), but starts to fail with optimizer v0.3.0 (verified locally) and still fail with v0.3.2 (the pipeline).

    It's onnx optimize ./assets/tests/conv.float32.onnx optimized.onnx.

    opened by zhenhuaw-me 2
  • Overwrite weights (initializers) with fixed data or random data

    Overwrite weights (initializers) with fixed data or random data

    Bert series ONNX models are very large (x GB) thus not easy to share the real file. We can improve this process by overwriting the weights (initializers)

    • It can be fixed data (e.g. all 0.1 or other value specified), thus the model can be compressed.
    • After sharing, we can recover with numpy style random numbers.

    This can only be used as a sharing method, the generated model are not useful when evaluate accuracy.

    For better usage:

    • Annotation will be added when writing fixed data, thus when re-random we can detect automatically.
    • The tensors can be specified with names or size.
    • Only works for FP32/FP16.
    • 0 removed.
    enhancement 
    opened by zhenhuaw-me 0
  • [draw] show tensor information on the edges

    [draw] show tensor information on the edges

    We currently draw tensors as boxes and operators as circles.

    image

    The graph will be complex if large model. We draw the tensor information on the edges and keep only operators as nodes.

    enhancement 
    opened by zhenhuaw-me 0
  • [infershape] should be able to set tensor shapes - inputs and others

    [infershape] should be able to set tensor shapes - inputs and others

    infershape is not very useful if the input shapes are symbolics (dynamic shapes). If the user can set input shapes, it's more powerful:

    • If set to static shapes, the shape of the model will be known.
    • Even for symbolics, the user can update the input shapes.

    The setup should be optional, and can extend to all the tensors in the model (excluding shape op related).

    Interface should be something like below.

    onnx infershape path/to/input/model.onnx path/to/output/model.onnx --tensor-shape t1:[d0,d1] t2:[d0,d1,d3]
    
    enhancement 
    opened by zhenhuaw-me 0
  • Extract should be able to skip the input tensor names

    Extract should be able to skip the input tensor names

    We should be able to walk the graph starting with the output tensor names and auto infer the input names if not given.

    It would be interesting to figure out if the user provided input tensor names and output tensor names don't cut a subgraph.

    enhancement 
    opened by zhenhuaw-me 0
Releases(v0.2.1)
  • v0.2.1(Nov 13, 2022)

    What's Changed

    • Ping onnxoptimizer to 0.2.7 due to "Unresolved value references" issue. See more in https://github.com/zhenhuaw-me/onnxcli/issues/28
    • convert: enable onnx to json by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/10
    • inspect: print input and output tensor too by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/12
    • inspect: dump input output tensor by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/14
    • inspect: show dimension name instead of value if has any by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/17
    • draw: gen tensor info for tensors that only have name by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/18
    • setup: install the dependent python packages by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/19
    • Check command by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/21

    Full Changelog: https://github.com/zhenhuaw-me/onnxcli/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 8, 2022)

  • v0.1.0(Dec 24, 2021)

Owner
黎明灰烬 (王振华 Zhenhua WANG)
A b[i|y]te of ML.sys|Arch|VM.
黎明灰烬 (王振华 Zhenhua WANG)
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022