PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

Related tags

Deep LearningDARDet
Overview

DARDet

PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf].

Highlights:

1. We develop a new dense anchor-free rotated object detection architecture (DARDet), which directly predicts five parameters of OBB at each spatial location.

2. Our DARDet significantly achieve state-of-the-art performance on the DOTA, UCAS-AOD, and HRSC2016 datasets with high efficiency..

Benchmark and model zoo, with extracting code nudt.

Model Backbone MS Rotate Lr schd Inf time (fps) box AP Download
DARDet R-50-FPN - - 1x 12.7 77.61 cfgmodel
DARDet R-50-FPN - 2x 12.7 78.74 cfgmodel

Installation

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV

The compatible MMDetection and MMCV versions are as below. Please install the correct version of MMCV to avoid installation issues.

MMDetection version MMCV version
2.13.0 mmcv-full>=1.3.3, <1.4.0

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

  1. You can simply install mmdetection with the following commands: pip install mmdet

  2. Create a conda virtual environment and activate it.

    conda create -n open-mmlab python=3.7 -y
    conda activate open-mmlab
  3. Install PyTorch and torchvision following the official instructions, e.g.,

    conda install pytorch torchvision -c pytorch

    Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.

    E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  4. Install mmcv-full, we recommend you to install the pre-build package as below.

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

    Please replace {cu_version} and {torch_version} in the url to your desired one. For example, to install the latest mmcv-full with CUDA 11 and PyTorch 1.7.0, use the following command:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
    cd ..

    Or directly run

    pip install mmcv-full
  5. Clone the DARDet repository.

    cd DARDet

    
    
  6. Install build requirements and then install DARDet

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    
  7. Install DOTA_devkit

    sudo apt-get install swig
    cd DOTA_devkit/polyiou
    swig -c++ -python csrc/polyiou.i
    python setup.py build_ext --inplace
    

Prepare DOTA dataset.

It is recommended to symlink the dataset root to `ReDet/data`.

Here, we give an example for single scale data preparation of DOTA-v1.5.

First, make sure your initial data are in the following structure.
```
data/dota15
├── train
│   ├──images
│   └── labelTxt
├── val
│   ├── images
│   └── labelTxt
└── test
    └── images
```
Split the original images and create COCO format json. 
```
python DOTA_devkit/prepare_dota1_5.py --srcpath path_to_dota --dstpath path_to_split_1024
```
Then you will get data in the following structure
```
dota15_1024
├── test1024
│   ├── DOTA_test1024.json
│   └── images
└── trainval1024
    ├── DOTA_trainval1024.json
     └── images
```
For data preparation with data augmentation, refer to "DOTA_devkit/prepare_dota1_5_v2.py"

Examples:

Assume that you have already downloaded the checkpoints to work_dirs/DARDet_r50_fpn_1x/.

  • Test DARDet on DOTA.
python tools/test.py configs/DARDet/dardet_r50_fpn_1x_dcn_val.py \
    work_dirs/dardet_r50_fpn_1x_dcn_val/epoch_12.pth \ 
    --out work_dirs/dardet_r50_fpn_1x_dcn_val/res.pkl

*If you want to evaluate the result on DOTA test-dev, zip the files in work_dirs/dardet_r50_fpn_1x_dcn_val/result_after_nms and submit it to the evaluation server.

Inference

To inference multiple images in a folder, you can run:

python demo/demo_inference.py ${CONFIG_FILE} ${CHECKPOINT} ${IMG_DIR} ${OUTPUT_DIR}

Train a model

MMDetection implements distributed training and non-distributed training, which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

*Important*: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.

Train with a single GPU

python tools/train.py ${CONFIG_FILE}

If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --validate (strongly recommended): Perform evaluation at every k (default value is 1, which can be modified like this) epochs during the training.
  • --work_dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume_from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume_from and load_from: resume_from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally. load_from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

Train with multiple machines

If you run MMDetection on a cluster managed with slurm, you can use the script slurm_train.sh.

./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16

You can check slurm_train.sh for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like infiniband.

Contact

Any question regarding this work can be addressed to [email protected].

[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022