Transformers are Graph Neural Networks!

Overview

🚀 Gated Graph Transformers

Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression.

Associated article: Transformers are Graph Neural Networks, by Chaitanya K. Joshi, published with The Gradient.

This repository is a continuously updated personal project to build intuitions about and track progress in Graph Representation Learning research. I aim to develop the most universal and powerful model which unifies state-of-the-art architectures from Graph Neural Networks and Transformers, without incorporating domain-specific tricks.

Gated Graph Transformer

Key Architectural Ideas

🤖 Deep, Residual Transformer Backbone

  • As the backbone architecture, I borrow the two-sub-layered, pre-normalization variant of Transformer encoders that has emerged as the standard in the NLP community, e.g. GPT-3. Each Transformer block consists of a message-passing sub-layer followed by a node-wise feedforward sub-layer. The graph convolution is described later.
  • The feedforward sub-layer projects node embeddings to an absurdly large dimension, passes them through a non-linear activation function, does dropout, and reduces back to the original embedding dimension.
  • The Transformer backbone enables training very deep and extremely overparameterized models. Overparameterization is important for performance in NLP and other combinatorially large domains, but was previously not possible for GNNs trained on small graph classifcation datasets. Coupled with unique node positional encodings (described later) and the feedforward sub-layer, overparameterization ensures that our GNN is Turing Universal (based on A. Loukas's recent insightful work, including this paper).

✉️ Anisotropic Graph Convolutions


Source: 'Deep Parametric Continuous Convolutional Neural Networks', Wang et al., 2018

  • As the graph convolution layer, I use the Gated Graph Convolution with dense attention mechanism, which we found to be the best performing graph convolution in Benchmarking GNNs. Intuitively, Gated GraphConv generalizes directional CNN filters for 2D images to arbitrary graphs by learning a weighted aggregations over the local neighbors of each node. It upgrades the node-to-node attention mechanism from GATs and MoNet (i.e. one attention weight per node pair) to consider dense feature-to-feature attention (i.e. d attention weights for pairs of d-dimensional node embeddings).
  • Another intuitive motivation for the Gated GraphConv is as a learnable directional diffusion process over the graph, or as a coupled PDE over node and edge features in the graph. Gated GraphConv makes the diffusion process/neighborhood aggregation anisotropic or directional, countering oversmoothing/oversquashing of features and enabling deeper models.
  • This graph convolution was originally proposed as a sentence encoder for NLP and further developed at NTU for molecule generation and combinatorial optimization. Evidently, I am partial to this idea. At the same time, it is worth noting that anisotropic local aggregations and generalizations of directed CNN filters have demonstrated strong performance across a myriad of applications, including 3D point clouds, drug discovery, material science, and programming languages.

🔄 Graph Positional Encodings


Source: 'Geometric Deep Learning: Going beyond Euclidean Data', Bronstein et al., 2017

  • I use the top-k non-trivial Laplacian Eigenvectors as unique node identifiers to inject structural/positional priors into the Transformer backbone. Laplacian Eigenvectors are a generalization of sinusoidal positional encodings from the original Transformers, and were concurrently proposed in the Benchmarking GNNs, EigenGNNs, and GCC papers.
  • Randomly flipping the sign of Laplacian Eigenvectors during training (due to symmetry) can be seen as an additional data augmentation or regularization technique, helping delay overfitting to training patterns. Going further, the Directional Graph Networks paper presents a more principled approach for using Laplacian Eigenvectors.

Some ideas still in the pipeline include:

  • Graph-specific Normalization - Originally motivated in Benchmarking GNNs as 'graph size normalization', there have been several subsequent graph-specific normalization techniques such as GraphNorm and MessageNorm, aiming to replace or augment standard Batch Normalization. Intuitively, there is room for improvement as BatchNorm flattens mini-batches of graphs instead of accounting for the underlying graph structure.

  • Theoretically Expressive Aggregation - There are several exciting ideas aiming to bridge the gap between theoretical expressive power, computational feasability, and generalization capacity for GNNs: PNA-style multi-head aggregation and scaling, generalized aggreagators from DeeperGCNs, pre-computing structural motifs as in GSN, etc.

  • Virtual Node and Low Rank Global Attention - After the message-passing step, the virtual node trick adds messages to-and-fro a virtual/super node connected to all graph nodes. LRGA comes with additional theretical motivations but does something similar. Intuitively, these techniques enable modelling long range or latent interactions in graphs and counter the oversquashing problem with deeper networks.

  • General Purpose Pre-training - It isn't truly a Transformer unless its pre-trained on hundreds of GPUs for thousands of hours...but general purpose pre-training for graph representation learning remains an open question!

Installation and Usage

# Create new Anaconda environment
conda create -n new-env python=3.7
conda activate new-env
# Install PyTorch 1.6 for CUDA 10.x
conda install pytorch=1.6 cudatoolkit=10.x -c pytorch
# Install DGL for CUDA 10.x
conda install -c dglteam dgl-cuda10.x
# Install other dependencies
conda install tqdm scikit-learn pandas urllib3 tensorboard
pip install -U ogb

# Train GNNs on ogbg-mol* datasets
python main_mol.py --dataset [ogbg-molhiv/ogbg-molpcba] --gnn [gated-gcn/gcn/mlp]

# Prepare submission for OGB leaderboards
bash scripts/ogbg-mol*.sh

# Collate results for submission
python submit.py --dataset [ogbg-molhiv/ogbg-molpcba] --expt [path-to-logs]

Note: The code was tested on Ubuntu 16.04, using Python 3.6, PyTorch 1.6 and CUDA 10.1.

Citation

@article{joshi2020transformers,
  author = {Joshi, Chaitanya K},
  title = {Transformers are Graph Neural Networks},
  journal = {The Gradient},
  year = {2020},
  howpublished = {\url{https://thegradient.pub/transformers-are-gaph-neural-networks/ } },
}
Owner
Chaitanya Joshi
Research Engineer at A*STAR, working on Graph Neural Networks
Chaitanya Joshi
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren TerzioÄźlu 4 Mar 22, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022