RAMA: Rapid algorithm for multicut problem

Related tags

Deep LearningRAMA
Overview

RAMA: Rapid algorithm for multicut problem

Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without compromising solution quality on NVIDIA GPU. It also gives lower bound guarantees. Paper available here.

animation

Requirements

We use CUDA 11.2 and GCC 10. Other combinations might also work but not tested. CMake is required for compilation.

Installation

C++ solver:

mkdir build
cd build
cmake ..
make -j 4

Python bindings:

We also provide python bindings using pybind. Simply run the following command:

python -m pip install git+https://github.com/pawelswoboda/RAMA.git

Usage

C++ solver:

We require multicut instance stored in a (.txt) file in the following format:

MULTICUT
i_1, j_1, cost_1
i_2, j_2, cost_2
...
i_n, j_n, cost_n

which corresponds to a graph with N edges. Where i and j should be vertex indices and cost is a floating point number. Positive costs implies that the nodes are similar and thus would prefer to be in same component and viceversa. Afterwards run:

./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE>

For more details and downloading multicut instances see LPMP.

Python solver:

An example to compute multicut on a triangle graph:

import rama_py
rama_py.rama_cuda([0, 1, 2], [1, 2, 0], [1.1, -2, 3], rama_py.multicut_solver_options()) 

Parameters:

The default set of parameters are defined here which correspond to algorithm PD from the paper. This algorithm offers best compute time versus solution quality trade-off. Parameters for other variants are:

  • Fast purely primal algorithm (P): This algorithm can be slightly worse than sequential CPU heuristics but is 30 to 50 times faster.
    ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 0 0 0 0
  • Best primal algorithm (PD+) : This algorithm can even be better than CPU solvers in terms of solution quality as it uses dual information. Still, it is 5 to 10 faster than best CPU solver.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 5 10
  • Dual algorithm (D): Use this algorithm for only computing the lower bound. Our lower bounds are slightly better than ICP and are computed up to 100 times faster.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 0 0 5

Run ./rama_text_input --help for details about the parameters.

Owner
Paul Swoboda
Paul Swoboda
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022