A simple baseline for 3d human pose estimation in PyTorch.

Overview

3d_pose_baseline_pytorch

A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementation written by Julieta Martinez et al.. Some codes for data processing are brought from the original version, thanks to the authors.

This is the code for the paper

@inproceedings{martinez_2017_3dbaseline,
  title={A simple yet effective baseline for 3d human pose estimation},
  author={Martinez, Julieta and Hossain, Rayat and Romero, Javier and Little, James J.},
  booktitle={ICCV},
  year={2017}
}

WIP

  • Training code
  • Testing code

Datasets

  • Human3.6M
  • HumanEva

Dependencies

Installation

  1. First, clone this repository:
    git clone --recursive https://github.com/weigq/3d_pose_baseline_pytorch.git
    
  2. Download the pre-processed Human3.6M dataset in 3d joints:
    unzip human36m.zip
    rm h36m.zip
    

Usage

Data preprocess

Train

  1. Train on Human3.6M groundtruth 2d joints:

    # optional arguments, you can access more details in opt.py
    main.py [-h] [--data_dir DATA_DIR] [--exp EXP] [--ckpt CKPT]
               [--load LOAD] [--test] [--resume]
               [--action {all,All}]
               [--max_norm] [--linear_size LINEAR_SIZE]
               [--num_stage NUM_STAGE] [--use_hg] [--lr LR]
               [--lr_decay LR_DECAY] [--lr_gamma LR_GAMMA] [--epochs EPOCHS]
               [--dropout DROPOUT] [--train_batch TRAIN_BATCH]
               [--test_batch TEST_BATCH] [--job JOB] [--no_max] [--max]
               [--procrustes]
    

    train the model:

    python main.py --exp example
    

    You will get the training and testing loss curves like:

    log

  2. Train on Human3.6M 2d joints detected by stacked hourglass:

Test

  1. You can download the pretrained model on ground-truth 2d pose for a quick demo.

    python main.py --load $PATH_TO_gt_ckpt_best.pth.tar --test
    

    and you will get the results:

    direct. discuss. eat. greet. phone photo pose purch. sit sitd. somke wait walkd. walk walkT avg
    original version 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
    pytorch version 35.7 42.3 39.4 40.7 44.5 53.3 42.8 40.1 52.5 53.9 42.8 43.1 44.1 33.4 36.3 -

License

MIT

Owner
weigq
weigq
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022