improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

Related tags

Deep LearningCLIP-ViL
Overview

CLIP-ViL

In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

We release the extracted features and reproducible code here.

Specifically, we develop our methods in two scenarios: (1) direct task-specific fine-tuning; and (2) Vision and Language pre-training.

CLIP-ViL-Direct/VLN

We directly plug CLIP into tasks-pecific models and finetune on three representative tasks including Visual Question Answering, Image Captioning, and Vision-Language Navigation.

Please see the corresponding code directory for full details.

Noted that in direct finetuning, for Visual Question Answering on VQA 2.0 test-dev, we are able to achieve up to 68.37% accuracy with Pythia, 74.01% accuracy with MCAN and generally more than 4.0% improvements in accuracy; For Image Captioning on Karpathy's test split of MS COCO, we got 2.1% improvements in CIDEr metric over resnet alternatives; For Navigation, On RxR, we got 5% improvements with the nDTW metric (the main metric for RxR). On R2R, we got about 6% improvements in accuracy regarding our strong baselines.

CLIP-ViL-Pretrain

In order to test the potential of combining CLIP pre-training and Vision and Language pre-training. We introduce CLIP-ViL-Pretrain, a vision-and-language model pre-trained on image-text data with CLIP visual encoder as its visual backbone. CLIP-ViL-Pretrain is pretrained on aligned image-text data with a reconstructive objective and an image-text matching objective. It is further finetuned on VQA, SNLI-VE and GQA tasks.

Please see the corresponding code directory for full details.

Noted that CLIP-ViL-Pretrain is able to achieve 76.48% accuracy on VQA 2.0 test-dev and 76.70% accuracy on test-std; 80.61% accuracy on SNLI-VE Dev and 80.20% on Test-P; 61.42% accuracy on GQA test-dev and 62.93% accuracy on test-std.

Related Links

Reference

If you use CLIP-ViL in your research or wish to refer to the baseline results published here, please use the following BibTeX entry.

@misc{shen2021clip,
    title={How Much Can CLIP Benefit Vision-and-Language Tasks?}, 
    author={Sheng Shen and Liunian Harold Li and Hao Tan and Mohit Bansal and Anna Rohrbach and Kai-Wei Chang and Zhewei Yao and Kurt Keutzer},
    year={2021},
    eprint={2107.06383},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022