[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Overview

Convolutional MLP

ConvMLP: Hierarchical Convolutional MLPs for Vision

Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision

By Jiachen Li[1,2], Ali Hassani[1]*, Steven Walton[1]*, and Humphrey Shi[1,2,3]

In association with SHI Lab @ University of Oregon[1] and University of Illinois Urbana-Champaign[2], and Picsart AI Research (PAIR)[3]

Comparison

Abstract

MLP-based architectures, which consist of a sequence of consecutive multi-layer perceptron blocks, have recently been found to reach comparable results to convolutional and transformer-based methods. However, most adopt spatial MLPs which take fixed dimension inputs, therefore making it difficult to apply them to downstream tasks, such as object detection and semantic segmentation. Moreover, single-stage designs further limit performance in other computer vision tasks and fully connected layers bear heavy computation. To tackle these problems, we propose ConvMLP: a hierarchical Convolutional MLP for visual recognition, which is a light-weight, stage-wise, co-design of convolution layers, and MLPs. In particular, ConvMLP-S achieves 76.8% top-1 accuracy on ImageNet-1k with 9M parameters and 2.4 GMACs (15% and 19% of MLP-Mixer-B/16, respectively). Experiments on object detection and semantic segmentation further show that visual representation learned by ConvMLP can be seamlessly transferred and achieve competitive results with fewer parameters.

Model

How to run

Getting Started

Our base model is in pure PyTorch and Torchvision. No extra packages are required. Please refer to PyTorch's Getting Started page for detailed instructions.

You can start off with src.convmlp, which contains the three variants: convmlp_s, convmlp_m, convmlp_l:

from src.convmlp import convmlp_l, convmlp_s

model = convmlp_l(pretrained=True, progress=True)
model_sm = convmlp_s(num_classes=10)

Image Classification

timm is recommended for image classification training and required for the training script provided in this repository:

./dist_classification.sh $NUM_GPUS -c $CONFIG_FILE /path/to/dataset

You can use our training configurations provided in configs/classification:

./dist_classification.sh 8 -c configs/classification/convmlp_s_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_m_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_l_imagenet.yml /path/to/ImageNet

Object Detection

mmdetection is recommended for object detection training and required for the training script provided in this repository:

./dist_detection.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/retinanet_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Object Detection & Instance Segmentation

mmdetection is recommended for training Mask R-CNN and required for the training script provided in this repository (same as above).

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/maskrcnn_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Semantic Segmentation

mmsegmentation is recommended for semantic segmentation training and required for the training script provided in this repository:

./dist_segmentation.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/segmentation:

./dist_segmentation.sh configs/segmentation/fpn_convmlp_s_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_m_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_l_512x512_40k_ade20k.py 8 /path/to/ADE20k

Results

Image Classification

Feature maps from ResNet50, MLP-Mixer-B/16, our Pure-MLP Baseline and ConvMLP-M are presented in the image below. It can be observed that representations learned by ConvMLP involve more low-level features like edges or textures compared to the rest. Feature map visualization

Dataset Model Top-1 Accuracy # Params MACs
ImageNet ConvMLP-S 76.8% 9.0M 2.4G
ConvMLP-M 79.0% 17.4M 3.9G
ConvMLP-L 80.2% 42.7M 9.9G

If importing the classification models, you can pass pretrained=True to download and set these checkpoints. The same holds for the training script (classification.py and dist_classification.sh): pass --pretrained. The segmentation/detection training scripts also download the pretrained backbone if you pass the correct config files.

Downstream tasks

You can observe the summarized results from applying our model to object detection, instance and semantic segmentation, compared to ResNet, in the image below.

Object Detection

Dataset Model Backbone # Params APb APb50 APb75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 38.4 59.8 41.8 Download
ConvMLP-M 37.1M 40.6 61.7 44.5 Download
ConvMLP-L 62.2M 41.7 62.8 45.5 Download
RetinaNet ConvMLP-S 18.7M 37.2 56.4 39.8 Download
ConvMLP-M 27.1M 39.4 58.7 42.0 Download
ConvMLP-L 52.9M 40.2 59.3 43.3 Download

Instance Segmentation

Dataset Model Backbone # Params APm APm50 APm75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 35.7 56.7 38.2 Download
ConvMLP-M 37.1M 37.2 58.8 39.8 Download
ConvMLP-L 62.2M 38.2 59.9 41.1 Download

Semantic Segmentation

Dataset Model Backbone # Params mIoU Checkpoint
ADE20k Semantic FPN ConvMLP-S 12.8M 35.8 Download
ConvMLP-M 21.1M 38.6 Download
ConvMLP-L 46.3M 40.0 Download

Transfer

Dataset Model Top-1 Accuracy # Params
CIFAR-10 ConvMLP-S 98.0% 8.51M
ConvMLP-M 98.6% 16.90M
ConvMLP-L 98.6% 41.97M
CIFAR-100 ConvMLP-S 87.4% 8.56M
ConvMLP-M 89.1% 16.95M
ConvMLP-L 88.6% 42.04M
Flowers-102 ConvMLP-S 99.5% 8.56M
ConvMLP-M 99.5% 16.95M
ConvMLP-L 99.5% 42.04M

Citation

@article{li2021convmlp,
      title={ConvMLP: Hierarchical Convolutional MLPs for Vision}, 
      author={Jiachen Li and Ali Hassani and Steven Walton and Humphrey Shi},
      year={2021},
      eprint={2109.04454},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022