Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

Overview

AutoInt: Automatic Integration for Fast Neural Volume Rendering
CVPR 2021

Project Page | Video | Paper

Open Colab
PyTorch implementation of automatic integration.
AutoInt: Automatic Integration for Fast Neural Volume Rendering
David B. Lindell*, Julien N. P. Martel*, Gordon Wetzstein
Stanford University
*denotes equal contribution
in CVPR 2021

Quickstart

To get started quickly, we provide a collab link above. Otherwise, you can clone this repo and follow the below instructions.

To setup a conda environment, download example training data, begin the training process, and launch Tensorboard:

conda env create -f environment.yml
conda activate autoint 
cd experiment_scripts
python train_1d_integral.py
tensorboard --logdir=../logs --port=6006

This example will fit a grad network to a 1D signal and evaluate the integral. You can monitor the training in your browser at localhost:6006. You can also train a network on the sparse tomography problem presented in the paper with python train_sparse_tomography.py.

Autoint for Neural Rendering

Automatic integration can be used to learn closed form solutions to the volume rendering equation, which is an integral equation accumulates transmittance and emittance along rays to render an image. While conventional neural renderers require hundreds of samples along each ray to evaluate these integrals (and hence hundreds of costly forward passes through a network), AutoInt allows evaluating these integrals far fewer forward passes.

Training

To run AutoInt for neural rendering, first set up the conda environment with

conda env create -f environment.yml
conda activate autoint 

Then, download the datasets to the data folder. We allow training on any of three datasets. The synthetic Blender data from NeRF and the LLFF scenes are hosted here. The DeepVoxels data are hosted here.

Finally, use the provided config files in the experiment_scripts/configs folder to train on these datasets. For example, to train on a NeRF Blender dataset, run the following

python train_autoint_radiance_field.py --config ./configs/config_blender_tiny.ini
tensorboard --logdir=../logs/ --port=6006

This will train a small, low-resolution scene. To train scenes at high-resolution (requires a few days of training time), use the config_blender.ini, config_deepvoxels.ini, or config_llff.ini config files.

Rendering

Rendering from a trained model can be done with the following command.

python train_autoint_radiance_field.py --config /path/to/config/file --render_model ../logs/path/to/log/directory <epoch number> --render_ouput /path/to/output/folder

Here, the --render_model command indicates the log directory where the code saves the models and checkpoints. For example, this would be ../logs/blender_lego for the default Blender dataset. Then, the epoch number can be found by looking at numbers of the the saved checkpoint filenames in ../logs/blender_lego/checkpoints/. Finally, --render_output should specify a folder where the output rendered images will be generated.

Citation

@inproceedings{autoint2021,
  title={AutoInt: Automatic Integration for Fast Neural Volume Rendering},
  author={David B. Lindell and Julien N. P. Martel and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022