Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

Overview

AutoInt: Automatic Integration for Fast Neural Volume Rendering
CVPR 2021

Project Page | Video | Paper

Open Colab
PyTorch implementation of automatic integration.
AutoInt: Automatic Integration for Fast Neural Volume Rendering
David B. Lindell*, Julien N. P. Martel*, Gordon Wetzstein
Stanford University
*denotes equal contribution
in CVPR 2021

Quickstart

To get started quickly, we provide a collab link above. Otherwise, you can clone this repo and follow the below instructions.

To setup a conda environment, download example training data, begin the training process, and launch Tensorboard:

conda env create -f environment.yml
conda activate autoint 
cd experiment_scripts
python train_1d_integral.py
tensorboard --logdir=../logs --port=6006

This example will fit a grad network to a 1D signal and evaluate the integral. You can monitor the training in your browser at localhost:6006. You can also train a network on the sparse tomography problem presented in the paper with python train_sparse_tomography.py.

Autoint for Neural Rendering

Automatic integration can be used to learn closed form solutions to the volume rendering equation, which is an integral equation accumulates transmittance and emittance along rays to render an image. While conventional neural renderers require hundreds of samples along each ray to evaluate these integrals (and hence hundreds of costly forward passes through a network), AutoInt allows evaluating these integrals far fewer forward passes.

Training

To run AutoInt for neural rendering, first set up the conda environment with

conda env create -f environment.yml
conda activate autoint 

Then, download the datasets to the data folder. We allow training on any of three datasets. The synthetic Blender data from NeRF and the LLFF scenes are hosted here. The DeepVoxels data are hosted here.

Finally, use the provided config files in the experiment_scripts/configs folder to train on these datasets. For example, to train on a NeRF Blender dataset, run the following

python train_autoint_radiance_field.py --config ./configs/config_blender_tiny.ini
tensorboard --logdir=../logs/ --port=6006

This will train a small, low-resolution scene. To train scenes at high-resolution (requires a few days of training time), use the config_blender.ini, config_deepvoxels.ini, or config_llff.ini config files.

Rendering

Rendering from a trained model can be done with the following command.

python train_autoint_radiance_field.py --config /path/to/config/file --render_model ../logs/path/to/log/directory <epoch number> --render_ouput /path/to/output/folder

Here, the --render_model command indicates the log directory where the code saves the models and checkpoints. For example, this would be ../logs/blender_lego for the default Blender dataset. Then, the epoch number can be found by looking at numbers of the the saved checkpoint filenames in ../logs/blender_lego/checkpoints/. Finally, --render_output should specify a folder where the output rendered images will be generated.

Citation

@inproceedings{autoint2021,
  title={AutoInt: Automatic Integration for Fast Neural Volume Rendering},
  author={David B. Lindell and Julien N. P. Martel and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022