Semi-Supervised Learning for Fine-Grained Classification

Overview

Semi-Supervised Learning for Fine-Grained Classification

This repo contains the code of:

  • A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji, CVPR 2021. [paper, poster, slides]
  • Semi-Supervised Learning with Taxonomic Labels, Jong-Chyi Su and Subhransu Maji, BMVC 2021. [paper, slides]

Preparing Datasets and Splits

We used the following datasets in the paper:

In addition the repository contains a new Semi-iNat dataset corresponding to the FGVC8 semi-supervised challenge:

  • Semi-iNat: This is a new dataset for the Semi-iNat Challenge at FGVC8 workshop at CVPR 2021. Different from Semi-Aves, Semi-iNat has more species from different kingdoms, and does not include in or out-of-domain label. For more details please see the challenge website.

The splits of each of these datasets can be found under data/${dataset}/${split}.txt corresponding to:

  • l_train -- labeled in-domain data
  • u_train_in -- unlabeled in-domain data
  • u_train_out -- unlabeled out-of-domain data
  • u_train (combines u_train_in and u_train_out)
  • val -- validation set
  • l_train_val (combines l_train and val)
  • test -- test set

Each line in the text file has a filename and the corresponding class label.

Please download the datasets from the corresponding websites. For Semi-Aves, put the data under data/semi_aves. FFor Semi-Fungi and Semi-CUB, download the images and put them under data/semi_fungi/images and data/cub/images.

Note 1: For the experiments on Semi-Fungi reported in the paper, the images are resized to a maximum of 300px for each side.
Note 2: We reported the results of another split of Semi-Aves in the appendix (for cross-validation), but we do not release the labels because it will leak the labels for unlabeled data.
Note 3: We also provide the species names of Semi-Aves under data/semi_aves_species_names.txt, and the species names of Semi-Fungi. The names were not shared in the competetion.

Training and Evaluation (CVPR paper)

We provide the code for all the methods included in the paper, except for FixMatch and MoCo. This includes methods of supervised training, self-training, PL, and curriculum PL. This code is developed based on this PyTorch implementation.

For FixMatch, we used the official Tensorflow code and an unofficial PyTorch code to reproduce the results. For MoCo, we use this PyContrast implementation.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --trainval

For example, to train a supervised model initialized from a inat pre-trained model on semi-aves dataset with in-domain unlabeled data only, you will use:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task semi_aves --init inat --alg supervised --unlabel in --num_iter 10000 --lr 1e-3 --wd 1e-4 --exp_dir semi_aves_supervised_in --MoCo false --trainval

Note that for experiments of Semi-Aves and Semi-Fungi in the paper, we combined the training and val set for training (use args --trainval).
For all the hyper-parameters, please see the following shell scripts:

  • exp_sup.sh for supervised training
  • exp_PL.sh for pseudo-labeling
  • exp_CPL.sh for curriculum pseudo-labeling
  • exp_MoCo.sh for MoCo + supervised training
  • exp_distill.sh for self-training and MoCo + self-training

Training and Evaluation (BMVC paper)

In our BMVC paper, we added the hierarchical supervision of coarse labels on top of semi-supervised learning.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train_hierarchy.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --level ${level}

The following are the arguments different from the above:

  • ${level}: choose from {genus, kingdom, phylum, class, order, family, species}
  • ${alg}: choose from {hierarchy, PL_hierarchy, distill_hierarchy}

For the settings and hyper-parameters, please see exp_hierarchy.sh.

Pre-Trained Models

We provide supervised training models, MoCo pre-trained models, as well as MoCo + supervised training models, for both Semi-Aves and Semi-Fungi datasets. Here are the links to download the model:

http://vis-www.cs.umass.edu/semi-inat-2021/ssl_evaluation/models/${method}/${dataset}_${initialization}_${unlabel}.pth.tar

  • ${method}: choose from {supervised, MoCo_init, MoCo_supervised}
  • ${dataset}: choose from {semi_aves, semi_fungi}
  • ${initialization}: choose from {scratch, imagenet, inat}
  • ${unlabel}: choose from {in, inout}

You need these models for self-training mothods. For example, the teacher model is initialized from model/supervised for self-training. For MoCo + self-training, the teacher model is initialized from model/MoCo_supervised, and the student model is initialized from model/MoCo_init.

We also provide the pre-trained ResNet-50 model of iNaturalist-18. This model was trained using this github code.

Related Challenges

Citation

@inproceedings{su2021realistic,
  author    = {Jong{-}Chyi Su and Zezhou Cheng and Subhransu Maji},
  title     = {A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021}
}

@inproceedings{su2021taxonomic,
  author    = {Jong{-}Chyi Su and Subhransu Maji},
  title     = {Semi-Supervised Learning with Taxonomic Labels},
  booktitle = {British Machine Vision Conference (BMVC)},
  year      = {2021}
}

@article{su2021semi_iNat,
      title={The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2106.01364}
}

@article{su2021semi_aves,
      title={The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2103.06937}
}
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022