Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Overview

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data.

This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》.

arch

Usage Instructions

  1. The code is adopted from InsightFace. I sincerely appreciate for their contributions.

  2. Our method need two stage training, therefore the code is also stepwise. I will be happy if my humble code would help you. If there are questions or issues, please let me know.

Note:

  1. Our method is appropriate for the noisy data with long-tailed distribution such as MF2 training dataset. When the training data is good, like MS1M and VGGFace2, InsightFace is more suitable.

  2. We use the last arcface model (best performance) to find the third type noise. Next we drop the fc weight of the last arcface model, then finetune from it using NR loss (adding a reweight term by putting more confidence in the prediction of the training model).

  3. The second stage training process need very careful manual tuning. We provide our training log for reference.

Prepare the code and the data.

  1. Install MXNet with GPU support (Python 2.7).
pip install mxnet-cu90
  1. download the code as unequal_code/
git clone https://github.com/zhongyy/Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data.git
  1. download the MF2 training dataset(password: w9y5) and the evaluation dataset, then place them in unequal_code/MF2_pic9_head/ unequal_code/MF2_pic9_tail/ and unequal_code/eval_dataset/ respectively.

step 1: Pretrain MF2_pic9_head with ArcFace.

End it when the acc of validation dataset (lfw,cfp-fp and agedb-30) does not ascend.

CUDA_VISIBLE_DEVICES='0,1' python -u train_softmax.py --network r50 --loss-type 4  --margin-m 0.5 --data-dir ./MF2_pic9_head/ --end-epoch 40 --per-batch-size 100 --prefix ../models/r50_arc_pic9/model 2>&1|tee r50_arc_pic9.log

step 2: Train the head data with NRA (finetune from step 1).

  1. Once the model_t,0 is saved, end it.
CUDA_VISIBLE_DEVICES='0,1' python -u train_NR_savemodel.py --network r50 --loss-type 4 --margin-m 0.5 --data-dir ./MF2_pic9_head/ --end-epoch 1 --lr 0.01  --per-batch-size 100 --noise-beta 0.9 --prefix ../models/NRA_r50pic9/model_t --bin-dir ./src/ --pretrained ../models/r50_arc_pic9/model,xx 2>&1|tee NRA_r50pic9_savemodel.log
  1. End it when the acc of validation dataset(lfw, cfp-fp and agedb-30) does not ascend.
CUDA_VISIBLE_DEVICES='0,1' python -u train_NR.py --network r50 --loss-type 4 --margin-m 0.5 --data-dir ./MF2_pic9_head/ --lr 0.01 --lr-steps 50000,90000 --per-batch-size 100 --noise-beta 0.9 --prefix ../models/NRA_r50pic9/model --bin-dir ./src/ --pretrained ../models/NRA_r50pic9/model_t,0 2>&1|tee NRA_r50pic9.log

step 3:

  1. Generate the denoised head data using ./MF2_pic9_head/train.lst and 0_noiselist.txt which has been generated in step 2. (We provide our denoised version(password: w9y5)

  2. Using the denoised head data (have removed the third type noise) and the tail data to continue the second stage training. It's noting that the training process need finetune manually by increase the --interweight gradually. When you change the interweight, you also need change the pretrained model by yourself, because we could not know which is the best model in the last training stage unless we test the model on the target dataset (MF2 test). We always finetune from the best model in the last training stage.

CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' python -u train_debug_soft_gs.py --network r50 --loss-type 4 --data-dir ./MF2_pic9_head_denoise/ --data-dir-interclass ./MF2_pic9_tail/ --end-epoch 100000 --lr 0.001 --interweight 1 --bag-size 3600 --batch-size1 360 --batchsize_id 360 --batch-size2 40  --pretrained /home/zhongyaoyao/insightface/models/NRA_r50pic9/model,xx --prefix ../models/model_all/model 2>&1|tee all_r50.log
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' python -u train_debug_soft_gs.py --network r50 --loss-type 4 --data-dir ./MF2_pic9_head_denoise/ --data-dir-interclass ./MF2_pic9_tail/ --end-epoch 100000 --lr 0.001 --interweight 5 --bag-size 3600 --batch-size1 360 --batchsize_id 360 --batch-size2 40  --pretrained ../models/model_all/model,xx --prefix ../models/model_all/model_s2 2>&1|tee all_r50_s2.log
Owner
Zhong Yaoyao
PhD student in BUPT
Zhong Yaoyao
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022