[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

Overview

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022)

teaser

This repository provides the official PyTorch implementation for the following paper:

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing
Yanbo Xu*, Yueqin Yin*, Liming Jiang, Qianyi Wu, Chengyao Zheng, Chen Change Loy, Bo Dai, Wayne Wu
In CVPR 2022. (* denotes equal contribution)
Project Page | Paper

Abstract: Recent advances like StyleGAN have promoted the growth of controllable facial editing. To address its core challenge of attribute decoupling in a single latent space, attempts have been made to adopt dual-space GAN for better disentanglement of style and content representations. Nonetheless, these methods are still incompetent to obtain plausible editing results with high controllability, especially for complicated attributes. In this study, we highlight the importance of interaction in a dual-space GAN for more controllable editing. We propose TransEditor, a novel Transformer-based framework to enhance such interaction. Besides, we develop a new dual-space editing and inversion strategy to provide additional editing flexibility. Extensive experiments demonstrate the superiority of the proposed framework in image quality and editing capability, suggesting the effectiveness of TransEditor for highly controllable facial editing.

Requirements

A suitable Anaconda environment named transeditor can be created and activated with:

conda env create -f environment.yaml
conda activate transeditor

Dataset Preparation

Datasets CelebA-HQ Flickr-Faces-HQ (FFHQ)
  • You can use download.sh in StyleMapGAN to download the CelebA-HQ dataset raw images and create the LMDB dataset format, similar for the FFHQ dataset.

Download Pretrained Models

  • The pretrained models can be downloaded from TransEditor Pretrained Models.
  • The age classifier and gender classifier for the FFHQ dataset can be found at pytorch-DEX.
  • The out/ folder and psp_out/ folder should be put under the TransEditor/ root folder, the pth/ folder should be put under the TransEditor/our_interfaceGAN/ffhq_utils/dex folder.

Training New Networks

To train the TransEditor network, run

python train_spatial_query.py $DATA_DIR --exp_name $EXP_NAME --batch 16 --n_sample 64 --num_region 1 --num_trans 8

For the multi-gpu distributed training, run

python -m torch.distributed.launch --nproc_per_node=$GPU_NUM --master_port $PORT_NUM train_spatial_query.py $DATA_DIR --exp_name $EXP_NAME --batch 16 --n_sample 64 --num_region 1 --num_trans 8

To train the encoder-based inversion network, run

# FFHQ
python psp_spatial_train.py $FFHQ_DATA_DIR --test_path $FFHQ_TEST_DIR --ckpt .out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --start_from_latent_avg --exp_dir $INVERSION_EXP_NAME --from_plus_space 

# CelebA-HQ
python psp_spatial_train.py $CELEBA_DATA_DIR --test_path $CELEBA_TEST_DIR --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --num_region 1 --num_trans 8 --start_from_latent_avg --exp_dir $INVERSION_EXP_NAME --from_plus_space 

Testing (Image Generation/Interpolation)

# sampled image generation
python test_spatial_query.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --sample

# interpolation
python test_spatial_query.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --dat_interp

Inversion

We provide two kinds of inversion methods.

Encoder-based inversion

# FFHQ
python dual_space_encoder_test.py --checkpoint_path ./psp_out/transeditor_inversion_ffhq/checkpoints/best_model.pt --output_dir ./projection --num_region 1 --num_trans 8 --start_from_latent_avg --from_plus_space --dataset_type ffhq_encode --dataset_dir /dataset/ffhq/test/images

# CelebA-HQ
python dual_space_encoder_test.py --checkpoint_path ./psp_out/transeditor_inversion_celeba/checkpoints/best_model.pt --output_dir ./projection --num_region 1 --num_trans 8 --start_from_latent_avg --from_plus_space --dataset_type celebahq_encode --dataset_dir /dataset/celeba_hq/test/images

Optimization-based inversion

# FFHQ
python projector_optimization.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --dataset_dir /dataset/ffhq/test/images --step 10000

# CelebA-HQ
python projector_optimization.py --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --num_region 1 --num_trans 8 --dataset_dir /dataset/celeba_hq/test/images --step 10000

Image Editing

  • The attribute classifiers for CelebA-HQ datasets can be found in celebahq-classifiers.
  • Rename the folder as pth_celeba and put it under the our_interfaceGAN/celeba_utils/ folder.
CelebA_Attributes attribute_index
Male 0
Smiling 1
Wavy hair 3
Bald 8
Bangs 9
Black hair 12
Blond hair 13

For sampled image editing, run

# FFHQ
python our_interfaceGAN/edit_all_noinversion_ffhq.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --attribute_name pose --num_sample 150000 # pose
python our_interfaceGAN/edit_all_noinversion_ffhq.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --attribute_name gender --num_sample 150000 # gender

# CelebA-HQ
python our_interfaceGAN/edit_all_noinversion_celebahq.py --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --attribute_index 0 --num_sample 150000 # Male
python our_interfaceGAN/edit_all_noinversion_celebahq.py --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --attribute_index 3 --num_sample 150000 # wavy hair
python our_interfaceGAN/edit_all_noinversion_celebahq.py --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --attribute_name pose --num_sample 150000 # pose

For real image editing, run

# FFHQ
python our_interfaceGAN/edit_all_inversion_ffhq.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --attribute_name pose --z_latent ./projection/encoder_inversion/ffhq_encode/encoded_z.npy --p_latent ./projection/encoder_inversion/ffhq_encode/encoded_p.npy # pose

python our_interfaceGAN/edit_all_inversion_ffhq.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --attribute_name gender --z_latent ./projection/encoder_inversion/ffhq_encode/encoded_z.npy --p_latent ./projection/encoder_inversion/ffhq_encode/encoded_p.npy # gender

# CelebA-HQ
python our_interfaceGAN/edit_all_inversion_celebahq.py --ckpt ./out/transeditor_celeba/checkpoint/370000.pt --attribute_index 0 --z_latent ./projection/encoder_inversion/celebahq_encode/encoded_z.npy --p_latent ./projection/encoder_inversion/celebahq_encode/encoded_p.npy # Male

Evaluation Metrics

# calculate fid, lpips, ppl
python metrics/evaluate_query.py --ckpt ./out/transeditor_ffhq/checkpoint/790000.pt --num_region 1 --num_trans 8 --batch 64 --inception metrics/inception_ffhq.pkl --truncation 1 --ppl --lpips --fid

Results

Image Interpolation

interp_p_celeba

interp_p_celeba

interp_z_celeba

interp_z_celeba

Image Editing

edit_pose_ffhq

edit_ffhq_pose

edit_gender_ffhq

edit_ffhq_gender

edit_smile_celebahq

edit_celebahq_smile

edit_blackhair_celebahq

edit_blackhair_celebahq

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{xu2022transeditor,
  title={{TransEditor}: Transformer-Based Dual-Space {GAN} for Highly Controllable Facial Editing},
  author={Xu, Yanbo and Yin, Yueqin and Jiang, Liming and Wu, Qianyi and Zheng, Chengyao and Loy, Chen Change and Dai, Bo and Wu, Wayne},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgments

The code is developed based on TransStyleGAN. We appreciate the nice PyTorch implementation.

Owner
Billy XU
Billy XU
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022