Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Overview

Graph-to-3D

This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arxiv
Helisa Dhamo*, Fabian Manhardt*, Nassir Navab, Federico Tombari
ICCV 2021

We address the novel problem of fully-learned 3D scene generation and manipulation from scene graphs, in which a user can specify in the nodes or edges of a semantic graph what they wish to see in the 3D scene.

If you find this code useful in your research, please cite

@inproceedings{graph2scene2021,
  title={Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs},
  author={Dhamo, Helisa and Manhardt, Fabian and Navab, Nassir and Tombari, Federico},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Setup

We have tested it on Ubuntu 16.04 with Python 3.7 and PyTorch 1.2.0

Code

# clone this repository and move there
git clone https://github.com/he-dhamo/graphto3d.git
cd graphto3d
# create a conda environment and install the requirments
conda create --name g2s_env python=3.7 --file requirements.txt 
conda activate g2s_env          # activate virtual environment
# install pytorch and cuda version as tested in our work
conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch
# more pip installations
pip install tensorboardx graphviz plyfile open3d==0.9.0.0 open3d-python==0.7.0.0 
# Set python path to current project
export PYTHONPATH="$PWD"

To evaluate shape diversity, you will need to setup the Chamfer distance. Download the extension folder from the AtlasNetv2 repo and install it following their instructions:

cd ./extension
python setup.py install

To download our checkpoints for our trained models and the Atlasnet weights used to obtain shape features:

cd ./experiments
chmod +x ./download_checkpoints.sh && ./download_checkpoints.sh

Dataset

Download the 3RScan dataset from their official site. You will need to download the following files using their script:

python download.py -o /path/to/3RScan/ --type semseg.v2.json
python download.py -o /path/to/3RScan/ --type labels.instances.annotated.v2.ply

Additionally, download the metadata for 3RScan:

cd ./GT
chmod +x ./download_metadata_3rscan.sh && ./download_metadata_3rscan.sh

Download the 3DSSG data files to the ./GT folder:

chmod +x ./download_3dssg.sh && ./download_3dssg.sh

We use the scene splits with up to 9 objects per scene from the 3DSSG paper. The relationships here are preprocessed to avoid the two-sided annotation for spatial relationships, as these can lead to paradoxes in the manipulation task. Finally, you will need our directed aligned 3D bounding boxes introduced in our project page. The following scripts downloads these data.

chmod +x ./download_postproc_3dssg.sh && ./download_postproc_3dssg.sh

Run the transform_ply.py script from this repo to obtain 3RScan scans in the correct alignment:

cd ..
python scripts/transform_ply.py --data_path /path/to/3RScan

Training

To train our main model with shared shape and layout embedding run:

python scripts/train_vaegan.py --network_type shared --exp ./experiments/shared_model --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

To run the variant with separate (disentangled) layout and shape features:

python scripts/train_vaegan.py --network_type dis --exp ./experiments/separate_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

For the 3D-SLN baseline run:

python scripts/train_vaegan.py --network_type sln --exp ./experiments/sln_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual False --with_manipulator False --with_changes False --weight_D_box 0 --with_shape_disc False

One relevant parameter is --with_feats. If set to true, this tries to read shape features directly instead of reading point clouds and feading them in AtlasNet to obtain the feature. If features are not yet to be found, it generates them during the first epoch, and reads these stored features instead of points in the next epochs. This saves a lot of time at training.

Each training experiment generates an args.json configuration file that can be used to read the right parameters during evaluation.

Evaluation

To evaluate the models run

python scripts/evaluate_vaegan.py --dataset_3RScan ../3RScan_v2/data/ --exp ./experiments/final_checkpoints/shared --with_points False --with_feats True --epoch 100 --path2atlas ./experiments/atlasnet/model_70.pth --evaluate_diversity False

Set --evaluate_diversity to True if you want to compute diversity. This takes a while, so it's disabled by default. To run the 3D-SLN baseline, or the variant with separate layout and shape features, simply provide the right experiment folder in --exp.

Acknowledgements

This repository contains code parts that are based on 3D-SLN and AtlasNet. We thank the authors for making their code available.

Owner
Helisa Dhamo
Helisa Dhamo
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022