[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Related tags

Deep LearningDePT
Overview

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems

Introduction

Multi-agent control is a central theme in the Cyber-Physical Systems (CPS). However, current control methods either receive non-Markovian states due to insufficient sensing and decentralized design, or suffer from poor convergence. This paper presents the Delayed Propagation Transformer (DePT), a new transformer-based model that specializes in the global modeling of CPS while taking into account the immutable constraints from the physical world. DePT induces a cone-shaped spatial-temporal attention prior, which injects the information propagation and aggregation principles and enables a global view. With physical constraint inductive bias baked into its design, our DePT is ready to plug and play for a broad class of multi-agent systems. The experimental results on one of the most challenging CPS -- network-scale traffic signal control system in the open world -- demonstrated the superior performance of DePT on synthetic and real-world datasets.

Method

flow

scenario

tu

Installation Guide

The RL training loop of this repo is inherited from Colight repo: https://github.com/wingsweihua/colight

First, create new environment

This step is optional. CoLight (teacher model for DePT with imitation learning) requires tensorflow==1.x.

conda create -y -n 
   
     python=3.6
conda activate 
    

    
   

Then, install cityflow

Follow the [Official installation guide]

Or optionally, use the following commands without docker (docker is recommended but not mandatory)

git clone https://github.com/cityflow-project/CityFlow.git
cd CityFlow
pip install .

To test if you have successfully installed cityflow, check if the following python codes can pass without error:

import cityflow
eng = cityflow.Engine

Then, install requirements for teacher Colight

The RL training loop of DePT is based on Colight, they share the same dependencies. A complete environment that passed the test is provided in DePT/requirements.txt.

Training Guide

First, train teacher Colight:

set use_DePT = False in DePT/config.py, then run main.py

Second, pre-fit attention prior

Initialize model and pre-fit the priors using /DePT/DePT_src/pretrain_decayer.py

If downgrading DePT to transformer and not using the spatial tempooral cone shaped prior, skip this step.

Before training, keep track of the following configurations for training DePT:

If training a colight teacher model, set use_DePT = False in DePT/config.py: DIC_COLIGHT_AGENT_CONF. If training the DePT model, set it to False.

If enabling the spatial temporal cone shaped prior (default is enabled), set the following in DePT/model.py.

ablation1_cone = False
ablation2_time = False
only_1cone = False

If using Colight as the teacher model, set which_teacher='colight' in DePT/DePT_src/model.py, and set colight_fname to the pre-trained Colight teacher .h5 file.

Train DePT:

Example commands
python main.py 

python main.py --cnt 3600  --rounds 100  --gen 4  

python main.py --cnt 3600  --rounds 100  --gen 5  --volume='newyork' --road_net='28_7' --suffix='real_triple'

parameter meaning:

--rounds will specify the number of rounds generated, each round is 1 hour simulation time; 100 rounds are recommended.

--gen will specify number of generators; all generators work in parallel. 1 to 5 are recommended.

Simulation Platform that passed the test:

Ubuntu 20.04.2

RTX A6000

Driver Version: 460.91.03 CUDA Version: 11.2

Optional step before training:

Delete the following dirs (Automatically generated files) won't cause error in training, except losing your redundant training histories.

rm -rf model 
rm -rf records

Citation

comming soon.
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022