CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Overview

Python >=3.5 PyTorch >=1.0

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf]

The official repository for TransReID: Transformer-based Object Re-Identification achieves state-of-the-art performances on object re-ID, including person re-ID and vehicle re-ID.

News

  • 2021.12 We improve TransReID via self-supervised pre-training. Please refer to TransReID-SSL
  • 2021.3 We release the code of TransReID.

Pipeline

framework

Abaltion Study of Transformer-based Strong Baseline

framework

Requirements

Installation

pip install -r requirements.txt
(we use /torch 1.6.0 /torchvision 0.7.0 /timm 0.3.2 /cuda 10.1 / 16G or 32G V100 for training and evaluation.
Note that we use torch.cuda.amp to accelerate speed of training which requires pytorch >=1.6)

Prepare Datasets

mkdir data

Download the person datasets Market-1501, MSMT17, DukeMTMC-reID,Occluded-Duke, and the vehicle datasets VehicleID, VeRi-776, Then unzip them and rename them under the directory like

data
├── market1501
│   └── images ..
├── MSMT17
│   └── images ..
├── dukemtmcreid
│   └── images ..
├── Occluded_Duke
│   └── images ..
├── VehicleID_V1.0
│   └── images ..
└── VeRi
    └── images ..

Prepare DeiT or ViT Pre-trained Models

You need to download the ImageNet pretrained transformer model : ViT-Base, ViT-Small, DeiT-Small, DeiT-Base

Training

We utilize 1 GPU for training.

python train.py --config_file configs/transformer_base.yml MODEL.DEVICE_ID "('your device id')" MODEL.STRIDE_SIZE ${1} MODEL.SIE_CAMERA ${2} MODEL.SIE_VIEW ${3} MODEL.JPM ${4} MODEL.TRANSFORMER_TYPE ${5} OUTPUT_DIR ${OUTPUT_DIR} DATASETS.NAMES "('your dataset name')"

Arguments

  • ${1}: stride size for pure transformer, e.g. [16, 16], [14, 14], [12, 12]
  • ${2}: whether using SIE with camera, True or False.
  • ${3}: whether using SIE with view, True or False.
  • ${4}: whether using JPM, True or False.
  • ${5}: choose transformer type from 'vit_base_patch16_224_TransReID',(The structure of the deit is the same as that of the vit, and only need to change the imagenet pretrained model) 'vit_small_patch16_224_TransReID','deit_small_patch16_224_TransReID',
  • ${OUTPUT_DIR}: folder for saving logs and checkpoints, e.g. ../logs/market1501

or you can directly train with following yml and commands:

# DukeMTMC transformer-based baseline
python train.py --config_file configs/DukeMTMC/vit_base.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + JPM
python train.py --config_file configs/DukeMTMC/vit_jpm.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + SIE
python train.py --config_file configs/DukeMTMC/vit_sie.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID (baseline + SIE + JPM)
python train.py --config_file configs/DukeMTMC/vit_transreid.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID with stride size [12, 12]
python train.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"

# MSMT17
python train.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# OCC_Duke
python train.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# Market
python train.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# VeRi
python train.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"

# VehicleID (The dataset is large and we utilize 4 v100 GPUs for training )
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 66666 train.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DIST_TRAIN True
#  or using following commands:
Bash dist_train.sh 

Tips: For person datasets with size 256x128, TransReID with stride occupies 12GB GPU memory and TransReID occupies 7GB GPU memory.

Evaluation

python test.py --config_file 'choose which config to test' MODEL.DEVICE_ID "('your device id')" TEST.WEIGHT "('your path of trained checkpoints')"

Some examples:

# DukeMTMC
python test.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"  TEST.WEIGHT '../logs/duke_vit_transreid_stride/transformer_120.pth'
# MSMT17
python test.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/msmt17_vit_transreid_stride/transformer_120.pth'
# OCC_Duke
python test.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/occ_duke_vit_transreid_stride/transformer_120.pth'
# Market
python test.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"  TEST.WEIGHT '../logs/market_vit_transreid_stride/transformer_120.pth'
# VeRi
python test.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/veri_vit_transreid_stride/transformer_120.pth'

# VehicleID (We test 10 times and get the final average score to avoid randomness)
python test.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/vehicleID_vit_transreid_stride/transformer_120.pth'

Trained Models and logs (Size 256)

framework

Datasets MSMT17 Market Duke OCC_Duke VeRi VehicleID
Model mAP | R1 mAP | R1 mAP | R1 mAP | R1 mAP | R1 R1 | R5
Baseline(ViT) 61.8 | 81.8 87.1 | 94.6 79.6 | 89.0 53.8 | 61.1 79.0 | 96.6 83.5 | 96.7
model | log model | log model | log model | log model | log model | test
TransReID*(ViT) 67.8 | 85.3 89.0 | 95.1 82.2 | 90.7 59.5 | 67.4 82.1 | 97.4 85.2 | 97.4
model | log model | log model | log model | log model | log model | test
TransReID*(DeiT) 66.3 | 84.0 88.5 | 95.1 81.9 | 90.7 57.7 | 65.2 82.4 | 97.1 86.0 | 97.6
model | log model | log model | log model | log model | log model | test

Note: We reorganize code and the performances are slightly different from the paper's.

Acknowledgement

Codebase from reid-strong-baseline , pytorch-image-models

We import veri776 viewpoint label from repo: https://github.com/Zhongdao/VehicleReIDKeyPointData

Citation

If you find this code useful for your research, please cite our paper

@InProceedings{He_2021_ICCV,
    author    = {He, Shuting and Luo, Hao and Wang, Pichao and Wang, Fan and Li, Hao and Jiang, Wei},
    title     = {TransReID: Transformer-Based Object Re-Identification},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15013-15022}
}

Contact

If you have any question, please feel free to contact us. E-mail: [email protected] , [email protected]

Owner
DamoCV
CV team of DAMO academy
DamoCV
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022