A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

Overview

TecoGAN-PyTorch

Introduction

This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to the official TensorFlow implementation TecoGAN-TensorFlow for more information.

Features

  • Better Performance: This repo provides model with smaller size yet better performance than the official repo. See our Benchmark on Vid4 and ToS3 datasets.
  • Multiple Degradations: This repo supports two types of degradation, i.e., BI & BD. Please refer to this wiki for more details about degradation types.
  • Unified Framework: This repo provides a unified framework for distortion-based and perception-based VSR methods.

Contents

  1. Dependencies
  2. Test
  3. Training
  4. Benchmark
  5. License & Citation
  6. Acknowledgements

Dependencies

  • Ubuntu >= 16.04
  • NVIDIA GPU + CUDA
  • Python 3
  • PyTorch >= 1.0.0
  • Python packages: numpy, matplotlib, opencv-python, pyyaml, lmdb
  • (Optional) Matlab >= R2016b

Test

Note: We apply different models according to the degradation type of the data. The following steps are for 4x upsampling in BD degradation. You can switch to BI degradation by replacing all BD to BI below.

  1. Download the official Vid4 and ToS3 datasets.
bash ./scripts/download/download_datasets.sh BD 

If the above command doesn't work, you can manually download these datasets from Google Drive, and then unzip them under ./data.

The dataset structure is shown as below.

data
  ├─ Vid4
    ├─ GT                # Ground-Truth (GT) video sequences
      └─ calendar
        ├─ 0001.png
        └─ ...
    ├─ Gaussian4xLR      # Low Resolution (LR) video sequences in BD degradation
      └─ calendar
        ├─ 0001.png
        └─ ...
    └─ Bicubic4xLR       # Low Resolution (LR) video sequences in BI degradation
      └─ calendar
        ├─ 0001.png
        └─ ...
  └─ ToS3
    ├─ GT
    ├─ Gaussian4xLR
    └─ Bicubic4xLR
  1. Download our pre-trained TecoGAN model. Note that this model is trained with lesser training data compared with the official one, since we can only retrieve 212 out of 308 videos from the official training dataset.
bash ./scripts/download/download_models.sh BD TecoGAN

Again, you can download the model from [BD degradation] or [BI degradation], and put it under ./pretrained_models.

  1. Super-resolute the LR videos with TecoGAN. The results will be saved at ./results.
bash ./test.sh BD TecoGAN
  1. Evaluate SR results using the official metrics. These codes are borrowed from TecoGAN-TensorFlow, with minor modifications to adapt to BI mode.
python ./codes/official_metrics/evaluate.py --model TecoGAN_BD_iter500000
  1. Check out model statistics (FLOPs, parameters and running speed). You can modify the last argument to specify the video size.
bash ./profile.sh BD TecoGAN 3x134x320

Training

  1. Download the official training dataset based on the instructions in TecoGAN-TensorFlow, rename to VimeoTecoGAN and then place under ./data.

  2. Generate LMDB for GT data to accelerate IO. The LR counterpart will then be generated on the fly during training.

python ./scripts/create_lmdb.py --dataset VimeoTecoGAN --data_type GT

The following shows the dataset structure after completing the above two steps.

data
  ├─ VimeoTecoGAN          # Original (raw) dataset
    ├─ scene_2000
      ├─ col_high_0000.png
      ├─ col_high_0001.png
      └─ ...
    ├─ scene_2001
      ├─ col_high_0000.png
      ├─ col_high_0001.png
      └─ ...
    └─ ...
  └─ VimeoTecoGAN.lmdb     # LMDB dataset
    ├─ data.mdb
    ├─ lock.mdb
    └─ meta_info.pkl       # each key has format: [vid]_[total_frame]x[h]x[w]_[i-th_frame]
  1. (Optional, this step is needed only for BI degradation) Manually generate the LR sequences with Matlab's imresize function, and then create LMDB for them.
# Generate the raw LR video sequences. Results will be saved at ./data/Bicubic4xLR
matlab -nodesktop -nosplash -r "cd ./scripts; generate_lr_BI"

# Create LMDB for the raw LR video sequences
python ./scripts/create_lmdb.py --dataset VimeoTecoGAN --data_type Bicubic4xLR
  1. Train a FRVSR model first. FRVSR has the same generator as TecoGAN, but without GAN training. When the training is finished, copy and rename the last checkpoint weight from ./experiments_BD/FRVSR/001/train/ckpt/G_iter400000.pth to ./pretrained_models/FRVSR_BD_iter400000.pth. This step offers a better initialization for the TecoGAN training.
bash ./train.sh BD FRVSR

You can download and use our pre-trained FRVSR model [BD degradation] [BI degradation] without training from scratch.

bash ./scripts/download/download_models.sh BD FRVSR
  1. Train a TecoGAN model. By default, the training is conducted in the background and the output info will be logged at ./experiments_BD/TecoGAN/001/train/train.log.
bash ./train.sh BD TecoGAN
  1. To monitor the training process and visualize the validation performance, run the following script.
 python ./scripts/monitor_training.py --degradation BD --model TecoGAN --dataset Vid4

Note that the validation results are NOT the same as the test results mentioned above, because we use a different implementation of the metrics. The differences are caused by croping policy, LPIPS version and some other issues.

Benchmark

[1] FLOPs & speed are computed on RGB sequence with resolution 134*320 on NVIDIA GeForce GTX 1080Ti GPU.
[2] Both FRVSR & TecoGAN use 10 residual blocks, while TecoGAN+ has 16 residual blocks.

License & Citation

If you use this code for your research, please cite the following paper.

@article{tecogan2020,
  title={Learning temporal coherence via self-supervision for GAN-based video generation},
  author={Chu, Mengyu and Xie, You and Mayer, Jonas and Leal-Taix{\'e}, Laura and Thuerey, Nils},
  journal={ACM Transactions on Graphics (TOG)},
  volume={39},
  number={4},
  pages={75--1},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Acknowledgements

This code is built on TecoGAN-TensorFlow, BasicSR and LPIPS. We thank the authors for sharing their codes.

If you have any questions, feel free to email [email protected]

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022