Performant, differentiable reinforcement learning

Related tags

Deep Learningdeluca
Overview

deluca

Performant, differentiable reinforcement learning

Notes

  1. This is pre-alpha software and is undergoing a number of core changes. Updates to follow.
  2. Please see the examples for guidance on how to use deluca

pypi pyversions security: bandit Code style: black License: Apache 2.0

build coverage Documentation Status doc_coverage

deluca

Comments
  • Exception error during installing deluca

    Exception error during installing deluca

    Hi.

    I am trying to install deluca and I get an Exception error. I am using

    Ubuntu 64 on a virtual machine Pycharm CE 2021.2, Python 3.8 pip 212.1.2

    I tried to install deluca with the package manager in Pycharm, the terminal in Pycharm and also the Ubuntu terminal. The error is the same. Note that I can install other normal packages like Numpy, Scipy, etc with no problem. Thanks in advance and I am looking forward to using this amazing package!

    pip install deluca
    Collecting deluca
       Using cached deluca-0.0.17-py3-none-any.whl (52 kB)
    Collecting flax
       Using cached flax-0.3.4-py3-none-any.whl (183 kB)
    Collecting brax
       Using cached brax-0.0.4-py3-none-any.whl (117 kB)
    Processing
    ./.cache/pip/wheels/78/ae/07/bd3adac873fa80efc909c09331831905ac657dbb8d1278235e/jax-0.2.19-py3-none-any.whl
    Collecting optax
       Using cached optax-0.0.9-py3-none-any.whl (118 kB)
    Collecting scipy
       Using cached
    scipy-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.4 MB)
    Collecting numpy
       Using cached
    numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
    (15.8 MB)
    Collecting matplotlib
       Using cached matplotlib-3.4.3-cp38-cp38-manylinux1_x86_64.whl (10.3 MB)
    Collecting msgpack
       Using cached msgpack-1.0.2-cp38-cp38-manylinux1_x86_64.whl (302 kB)
    Collecting grpcio
       Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB)
    Collecting clu
       Using cached clu-0.0.6-py3-none-any.whl (77 kB)
    Collecting gym
       Using cached gym-0.19.0.tar.gz (1.6 MB)
    Collecting absl-py
       Using cached absl_py-0.13.0-py3-none-any.whl (132 kB)
    Collecting tfp-nightly[jax]<=0.13.0.dev20210422
       Using cached tfp_nightly-0.13.0.dev20210422-py2.py3-none-any.whl (5.3 MB)
    Collecting jaxlib
       Using cached jaxlib-0.1.70-cp38-none-manylinux2010_x86_64.whl (46.9 MB)
    Collecting dataclasses
       Using cached dataclasses-0.6-py3-none-any.whl (14 kB)
    Collecting opt-einsum
       Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
    Collecting chex>=0.0.4
       Using cached chex-0.0.8-py3-none-any.whl (57 kB)
    Requirement already satisfied: pillow>=6.2.0 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (7.0.0)
    Collecting cycler>=0.10
       Using cached cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
    Collecting pyparsing>=2.2.1
       Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
    Collecting kiwisolver>=1.0.1
       Using cached kiwisolver-1.3.1-cp38-cp38-manylinux1_x86_64.whl (1.2 MB)
    Requirement already satisfied: python-dateutil>=2.7 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (2.7.3)
    Requirement already satisfied: six>=1.5.2 in
    /usr/lib/python3/dist-packages (from grpcio->brax->deluca) (1.14.0)
    Collecting tensorflow-datasets
       Using cached tensorflow_datasets-4.4.0-py3-none-any.whl (4.0 MB)
    Collecting packaging
       Using cached packaging-21.0-py3-none-any.whl (40 kB)
    Collecting ml-collections
       Using cached ml_collections-0.1.0-py3-none-any.whl (88 kB)
    Collecting tensorflow
       Downloading tensorflow-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
    (458.4 MB)
          |▋                               | 8.4 MB 16 kB/s eta
    7:44:54ERROR: Exception:
    Traceback (most recent call last):
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 425, in _error_catcher
         yield
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 507, in read
         data = self._fp.read(amt) if not fp_closed else b""
       File
    "/usr/share/python-wheels/CacheControl-0.12.6-py2.py3-none-any.whl/cachecontrol/filewrapper.py",
    line 62, in read
         data = self.__fp.read(amt)
       File "/usr/lib/python3.8/http/client.py", line 455, in read
         n = self.readinto(b)
       File "/usr/lib/python3.8/http/client.py", line 499, in readinto
         n = self.fp.readinto(b)
       File "/usr/lib/python3.8/socket.py", line 669, in readinto
         return self._sock.recv_into(b)
       File "/usr/lib/python3.8/ssl.py", line 1241, in recv_into
         return self.read(nbytes, buffer)
       File "/usr/lib/python3.8/ssl.py", line 1099, in read
         return self._sslobj.read(len, buffer)
    socket.timeout: The read operation timed out
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
       File
    "/usr/lib/python3/dist-packages/pip/_internal/cli/base_command.py", line
    186, in _main
         status = self.run(options, args)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/commands/install.py", line
    357, in run
         resolver.resolve(requirement_set)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    177, in resolve
         discovered_reqs.extend(self._resolve_one(requirement_set, req))
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    333, in _resolve_one
         abstract_dist = self._get_abstract_dist_for(req_to_install)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    282, in _get_abstract_dist_for
         abstract_dist = self.preparer.prepare_linked_requirement(req)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 480, in prepare_linked_requirement
         local_path = unpack_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 282, in unpack_url
         return unpack_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 158, in unpack_http_url
         from_path, content_type = _download_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 303, in _download_http_url
         for chunk in download.chunks:
       File "/usr/lib/python3/dist-packages/pip/_internal/utils/ui.py", line
    160, in iter
         for x in it:
       File "/usr/lib/python3/dist-packages/pip/_internal/network/utils.py",
    line 15, in response_chunks
         for chunk in response.raw.stream(
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 564, in stream
         data = self.read(amt=amt, decode_content=decode_content)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 529, in read
         raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
       File "/usr/lib/python3.8/contextlib.py", line 131, in __exit__
         self.gen.throw(type, value, traceback)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 430, in _error_catcher
         raise ReadTimeoutError(self._pool, None, "Read timed out.")
    urllib3.exceptions.ReadTimeoutError:
    HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed
    out.
    
    opened by FarnazAdib 4
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Consider dependency on OpenAI Gym

    Consider dependency on OpenAI Gym

    • Not clear what the benefits of compatibility are since existing agents that work on OpenAI Gym environments have no guarantee of working on deluca environments
    • OpenAI Gym bundles environment with initialization and task. Not necessarily something we want to do.
    opened by danielsuo 0
  • Changes to _adaptive.py

    Changes to _adaptive.py

    Hello! I made some modifications to AdaGPC (in _adaptive.py). In the existing implementation, GPC outperforms AdaGPC in the known LDS setting, which is the opposite of what one should expect. Based on some preliminary experiments, I believe AdaGPC is now working properly (at least in the known dynamics version). (I also made some miscellaneous changes in other files, e.g., to the imports in some of the agent files -- I think there might have been some file restructuring across different versions of deluca, but the imports were not updated to reflect this change, causing some errors at runtime.) Please let me know if you have any questions/concerns. Thanks!

    opened by simran135 1
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Implementation of drc

    Implementation of drc

    Hi

    Thanks for providing this interesting package.

    I am trying to test drc on a simple setup and I notice that the current implementation of drc does not work. I mean when I try it for a simple partially observable linear system with A = np.array([[1.0 0.95], [0.0, -0.9]]), B = np.array([[0.0], [1.0]]) C = np.array([[1.0, 0]]) Q , R = I gaussian process noise, zero observation noise which is open loop stable, the controller acts like a zero controller. I tried to get a different response by setting the hyperparameters but they are mostly the same. Then I looked at the implementation at the deluca github and I noticed that the counterfactual cost is not defined correctly (if I am not wrong). According to Algorithm 1 in [1], we need to use M_t to compute y_t (which depends on the previous controls (u) using again M_t) but in the implementation, the previous controls based on M_{t-i} are used. Anyway, I implemented the algorithm using M_t but what I get after the simulation is either close to zero control or an unstable one.

    I was wondering if you have any code example for the DRC algorithm that works? [1] Simchowitz, Max and Singh, Karan and Hazan, Elad, "Improper learning for non-stochastic control", COLT 2020.

    Thanks a lot, Sincerely, Farnaz

    opened by FarnazAdib 4
Releases(v0.0.17)
Owner
Google
Google ❤️ Open Source
Google
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022