Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Related tags

Deep LearningBiDR
Overview

BiDR

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval.

Requirements

torch==1.7
transformers==4.6
faiss-gpu==1.6.4.post2

Data Download and Preprocess

bash download_data.sh
python preprocess.py

These commands will download and preprocess the MSMARCO Passage and Doc dataset, then the resutls will be saved to ./data.
We take the Passage dataset as the example to show the running workflow.

Conventional Workflow

Representation Learning

Train the encoder with random negative (or set --hardneg_json to provied bm25/hard negatives) :

mkdir log
dataset=passage
savename=dense_global_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
|tee ./log/${savename}.log

Unsupervised Quantization

Generate dense embeddings of queries and docs:

data_type=passage
savename=dense_global_model
epoch=20
python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

Product Quantization based on Faiss and recall performance:

data_type=passage
savename=dense_global_model
epoch=20
python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--ckpt_path /model/${savename}/${epoch}/ \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Progressively Optimized Bi-Granular Document Representation

Sparse Representation Learning

Instead of running unsupervised quantization for the well-learned dense embeddings, the sparse embeddings are generated from contrastive learning, which optimizes the global discrimination and helps to enable high-quality answers to be covered in candidate search.

Train

We find that using Faiss OPQ to initialize the PQ module has a significant gain for MSMARCO dataset. But for the largest dataset: Ads dataset, initialization with Faiss OPQ is redundant and has no promotion.

dataset=passage
savename=sparse_global_model
python train.py --model_name_or_path ./model/dense_global_model/20 \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq True \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--partition 96 --centroids 256 --quantloss_weight 0.0 \
|tee ./log/${savename}.log

where the ./model/dense_global_model/20 and ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index is generated by conventional workflow.

Test

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index

Dense Representation Learning

The dense embeddings are optimized based on the candidate distribution generated by sparse embeddings. We propose a novel sampling strategy called locality-centric sampling to enhance local discrimination: construct a bipartite proximity graph and conduct random walk or snow sample on it.

Train

Encode the quries in train set and generate the candidates for all train queries:

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} \
--mode train

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--mode train \
--save_hardneg_to_json

This command will save the train_hardneg.json to output_dir. Then train the dense embeddings to distinguish the ground truth from the negative in candidate:

dataset=passage
savename=dense_local_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method {random_walk or snow_sample} \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
--hardneg_json ./data/${data_type}/evaluate/sparse_global_model_20/train_hardneg.json \
--mink 0  --maxk 200 \
|tee ./log/${savename}.log

Test

data_type=passage
savename=dense_local_model
epoch=10

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--ckpt_path ./model/${savename}/${epoch}/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/post_verification.py \
--data_type ${data_type} \
--output_dir  evaluate/${savename}_${epoch} \
--candidate_from_ann ./data/${data_type}/evaluate/sparse_global_model_20/dev.rank_1000_score_faiss_opq.tsv \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022