[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Related tags

Deep Learningjiif
Overview

Joint Implicit Image Function for Guided Depth Super-Resolution

This repository contains the code for:

Joint Implicit Image Function for Guided Depth Super-Resolution
Jiaxiang Tang, Xiaokang Chen, Gang Zeng
ACM MM 2021

model

Installation

Environments:

  • Python >= 3.6
  • PyTorch >= 1.6.0
  • tensorboardX
  • tqdm, opencv-python, Pillow
  • NVIDIA apex (python-only build is ok.)

Data preparation

Please see data/prepare_data.md for the details.

Training

You can use the provided scripts (scripts/train*) to train models.

For example:

# train JIIF with scale = 8 on the NYU dataset.
OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=2 python main.py \
    --name jiif_8 --model JIIF --scale 8 \
    --sample_q 30720 --input_size 256 --train_batch 1 \
    --epoch 200 --eval_interval 10 \
    --lr 0.0001 --lr_step 60 --lr_gamma 0.2

Testing

To test the performance of the models on difference datasets, you can use the provided scripts (scripts/test*).

For example:

# test the best checkpoint on MiddleBury dataest with scale = 8
OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=1 python main.py \
    --test --checkpoint best \
    --name jiif_8 --model JIIF \
    --dataset Middlebury --scale 8 --data_root ./data/depth_enhance/01_Middlebury_Dataset

Pretrained models and Reproducing

We provide the pretrained models here.

To test the performance of the pretrained models, please download the corresponding models and put them under pretrained folder. Then you can use scripts/test_jiif_pretrained.sh and scripts/test_denoise_jiif_pretrained.sh to reproduce the results reported in our paper.

Citation

If you find the code useful for your research, please use the following BibTeX entry:

@article{tang2021joint,
    title        = {Joint Implicit Image Function for Guided Depth Super-Resolution},
    author       = {Jiaxiang Tang, Xiaokang Chen, Gang Zeng},
    year         = 2021,
    journal      = {arXiv preprint arXiv:2107.08717}
}

Acknowledgment

The model implementation is based on liif.

Owner
hawkey
nameless kiui.
hawkey
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022