Selfplay In MultiPlayer Environments

Related tags

Deep LearningSIMPLE
Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

Selfplay In MultiPlayer Environments
· Report Bug · Request Feature


Table of Contents

  1. About The Project
  2. Getting Started
  3. Tutorial
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgements


About The Project

SIMPLE Diagram

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

It implements Proximal Policy Optimisation (PPO), with a built-in wrapper around the multiplayer environments that handles the loading and action-taking of opponents in the environment. The wrapper delays the reward back to the PPO agent, until all opponents have taken their turn. In essence, it converts the multiplayer environment into a single-player environment that is constantly evolving as new versions of the policy network are added to the network bank.

To learn more, check out the accompanying blog post.

This guide explains how to get started with the repo, add new custom environments and tune the hyperparameters of the system.

Have fun!


Getting Started

To get a local copy up and running, follow these simple steps.

Prerequisites

Install Docker and Docker Compose to make use of the docker-compose.yml file

Installation

  1. Clone the repo
    git clone https://github.com/davidADSP/SIMPLE.git
    cd SIMPLE
  2. Build the image and 'up' the container.
    docker-compose up -d
  3. Choose an environment to install in the container (tictactoe, connect4, sushigo and butterfly are currently implemented)
    bash ./scripts/install_env.sh sushigo

Tutorial

This is a quick tutorial to allow you to start using the two entrypoints into the codebase: test.py and train.py.

TODO - I'll be adding more substantial documentation for both of these entrypoints in due course! For now, descriptions of each command line argument can be found at the bottom of the files themselves.


Quickstart

test.py

This entrypoint allows you to play against a trained AI, pit two AIs against eachother or play against a baseline random model.

For example, try the following command to play against a baseline random model in the Sushi Go environment.

docker-compose exec app python3 test.py -d -g 1 -a base base human -e sushigo 

train.py

This entrypoint allows you to start training the AI using selfplay PPO. The underlying PPO engine is from the Stable Baselines package.

For example, you can start training the agent to learn how to play SushiGo with the following command:

docker-compose exec app python3 train.py -r -e sushigo 

After 30 or 40 iterations the process should have achieved above the default threshold score of 0.2 and will output a new best_model.zip to the /zoo/sushigo folder.

Training runs until you kill the process manually (e.g. with Ctrl-C), so do that now.

You can now use the test.py entrypoint to play 100 games silently between the current best_model.zip and the random baselines model as follows:

docker-compose exec app python3 test.py -g 100 -a best_model base base -e sushigo 

You should see that the best_model scores better than the two baseline model opponents.

Played 100 games: {'best_model_btkce': 31.0, 'base_sajsi': -15.5, 'base_poqaj': -15.5}

You can continue training the agent by dropping the -r reset flag from the train.py entrypoint arguments - it will just pick up from where it left off.

docker-compose exec app python3 train.py -e sushigo 

Congratulations, you've just completed one training cycle for the game Sushi Go! The PPO agent will now have to work out a way to beat the model it has just created...


Tensorboard

To monitor training, you can start Tensorboard with the following command:

bash scripts/tensorboard.sh

Navigate to localhost:6006 in a browser to view the output.

In the /zoo/pretrained/ folder there is a pre-trained //best_model.zip for each game, that can be copied up a directory (e.g. to /zoo/sushigo/best_model.zip) if you want to test playing against a pre-trained agent right away.


Custom Environments

You can add a new environment by copying and editing an existing environment in the /environments/ folder.

For the environment to work with the SIMPLE self-play wrapper, the class must contain the following methods (expanding on the standard methods from the OpenAI Gym framework):

__init__

In the initiation method, you need to define the usual action_space and observation_space, as well as two additional variables:

  • n_players - the number of players in the game
  • current_player_num - an integer that tracks which player is currently active  

step

The step method accepts an action from the current active player and performs the necessary steps to update the game environment. It should also it should update the current_player_num to the next player, and check to see if an end state of the game has been reached.

reset

The reset method is called to reset the game to the starting state, ready to accept the first action.

render

The render function is called to output a visual or human readable summary of the current game state to the log file.

observation

The observation function returns a numpy array that can be fed as input to the PPO policy network. It should return a numeric representation of the current game state, from the perspective of the current player, where each element of the array is in the range [-1,1].

legal_actions

The legal_actions function returns a numpy vector of the same length as the action space, where 1 indicates that the action is valid and 0 indicates that the action is invalid.

Please refer to existing environments for examples of how to implement each method.

You will also need to add the environment to the two functions in /utils/register.py - follow the existing examples of environments for the structure.


Parallelisation

The training process can be parallelised using MPI across multiple cores.

For example to run 10 parallel threads that contribute games to the current iteration, you can simply run:

docker-compose exec app mpirun -np 10 python3 train.py -e sushigo 

Roadmap

See the open issues for a list of proposed features (and known issues).


Contributing

Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the GPL-3.0. See LICENSE for more information.


Contact

David Foster - @davidADSP - [email protected]

Project Link: https://github.com/davidADSP/SIMPLE


Acknowledgements

There are many repositories and blogs that have helped me to put together this repository. One that deserves particular acknowledgement is David's Ha's Slime Volleyball Gym, that also implements multi-agent reinforcement learning. It has helped to me understand how to adapt the callback function to a self-play setting and also to how to implement MPI so that the codebase can be highly parallelised. Definitely worth checking out!


A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022