A simple, fully convolutional model for real-time instance segmentation.

Overview

You Only Look At CoefficienTs

    ██╗   ██╗ ██████╗ ██╗      █████╗  ██████╗████████╗
    ╚██╗ ██╔╝██╔═══██╗██║     ██╔══██╗██╔════╝╚══██╔══╝
     ╚████╔╝ ██║   ██║██║     ███████║██║        ██║   
      ╚██╔╝  ██║   ██║██║     ██╔══██║██║        ██║   
       ██║   ╚██████╔╝███████╗██║  ██║╚██████╗   ██║   
       ╚═╝    ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═════╝   ╚═╝ 

A simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:

YOLACT++ (v1.2) released! (Changelog)

YOLACT++'s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO's test-dev (check out our journal paper here).

In order to use YOLACT++, make sure you compile the DCNv2 code. (See Installation)

For a real-time demo, check out our ICCV video:

IMAGE ALT TEXT HERE

Some examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO's test-dev):

Example 0

Example 1

Example 2

Installation

  • Clone this repository and enter it:
    git clone https://github.com/dbolya/yolact.git
    cd yolact
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Manually with pip
      • Set up a Python3 environment (e.g., using virtenv).
      • Install Pytorch 1.0.1 (or higher) and TorchVision.
      • Install some other packages:
        # Cython needs to be installed before pycocotools
        pip install cython
        pip install opencv-python pillow pycocotools matplotlib 
  • If you'd like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into ./data/coco.
    sh data/scripts/COCO.sh
  • If you'd like to evaluate YOLACT on test-dev, download test-dev with this script.
    sh data/scripts/COCO_test.sh
  • If you want to use YOLACT++, compile deformable convolutional layers (from DCNv2). Make sure you have the latest CUDA toolkit installed from NVidia's Website.
    cd external/DCNv2
    python setup.py build develop

Evaluation

Here are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on test-dev:

Image Size Backbone FPS mAP Weights
550 Resnet50-FPN 42.5 28.2 yolact_resnet50_54_800000.pth Mirror
550 Darknet53-FPN 40.0 28.7 yolact_darknet53_54_800000.pth Mirror
550 Resnet101-FPN 33.5 29.8 yolact_base_54_800000.pth Mirror
700 Resnet101-FPN 23.6 31.2 yolact_im700_54_800000.pth Mirror

YOLACT++ models (released on December 16th, 2019):

Image Size Backbone FPS mAP Weights
550 Resnet50-FPN 33.5 34.1 yolact_plus_resnet50_54_800000.pth Mirror
550 Resnet101-FPN 27.3 34.6 yolact_plus_base_54_800000.pth Mirror

To evalute the model, put the corresponding weights file in the ./weights directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., yolact_base for yolact_base_54_800000.pth).

Quantitative Results on COCO

# Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.
# This should get 29.92 validation mask mAP last time I checked.
python eval.py --trained_model=weights/yolact_base_54_800000.pth

# Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.
# This command will create './results/bbox_detections.json' and './results/mask_detections.json' for detection and instance segmentation respectively.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json

# You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.
python run_coco_eval.py

# To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go
python eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset

Qualitative Results on COCO

# Display qualitative results on COCO. From here on I'll use a confidence threshold of 0.15.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display

Benchmarking on COCO

# Run just the raw model on the first 1k images of the validation set
python eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000

Images

# Display qualitative results on the specified image.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png

# Process an image and save it to another file.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png

# Process a whole folder of images.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder

Video

# Display a video in real-time. "--video_multiframe" will process that many frames at once for improved performance.
# If you want, use "--display_fps" to draw the FPS directly on the frame.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4

# Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0

# Process a video and save it to another file. This uses the same pipeline as the ones above now, so it's fast!
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4

As you can tell, eval.py can do a ton of stuff. Run the --help command to see everything it can do.

python eval.py --help

Training

By default, we train on COCO. Make sure to download the entire dataset using the commands above.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
    • For Darknet53, download darknet53.pth from here.
  • Run one of the training commands below.
    • Note that you can press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.
# Trains using the base config with a batch size of 8 (the default).
python train.py --config=yolact_base_config

# Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.
python train.py --config=yolact_base_config --batch_size=5

# Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file's name.
python train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1

# Use the help option to see a description of all available command line arguments
python train.py --help

Multi-GPU Support

YOLACT now supports multiple GPUs seamlessly during training:

  • Before running any of the scripts, run: export CUDA_VISIBLE_DEVICES=[gpus]
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Logging

YOLACT now logs training and validation information by default. You can disable this with --no_log. A guide on how to visualize these logs is coming soon, but now you can look at LogVizualizer in utils/logger.py for help.

Pascal SBD

We also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:

  1. Download the dataset from here. It's the first link in the top "Overview" section (and the file is called benchmark.tgz).
  2. Extract the dataset somewhere. In the dataset there should be a folder called dataset/img. Create the directory ./data/sbd (where . is YOLACT's root) and copy dataset/img to ./data/sbd/img.
  3. Download the COCO-style annotations from here.
  4. Extract the annotations into ./data/sbd/.
  5. Now you can train using --config=yolact_resnet50_pascal_config. Check that config to see how to extend it to other models.

I will automate this all with a script soon, don't worry. Also, if you want the script I used to convert the annotations, I put it in ./scripts/convert_sbd.py, but you'll have to check how it works to be able to use it because I don't actually remember at this point.

If you want to verify our results, you can download our yolact_resnet50_pascal_config weights from here. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the "all" AP isn't the same as the "vol" AP reported in others papers for pascal (they use an averages of the thresholds from 0.1 - 0.9 in increments of 0.1 instead of what COCO uses).

Custom Datasets

You can also train on your own dataset by following these steps:

  • Create a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found here. Note that we don't use some fields, so the following may be omitted:
    • info
    • liscense
    • Under image: license, flickr_url, coco_url, date_captured
    • categories (we use our own format for categories, see below)
  • Create a definition for your dataset under dataset_base in data/config.py (see the comments in dataset_base for an explanation of each field):
my_custom_dataset = dataset_base.copy({
    'name': 'My Dataset',

    'train_images': 'path_to_training_images',
    'train_info':   'path_to_training_annotation',

    'valid_images': 'path_to_validation_images',
    'valid_info':   'path_to_validation_annotation',

    'has_gt': True,
    'class_names': ('my_class_id_1', 'my_class_id_2', 'my_class_id_3', ...)
})
  • A couple things to note:
    • Class IDs in the annotation file should start at 1 and increase sequentially on the order of class_names. If this isn't the case for your annotation file (like in COCO), see the field label_map in dataset_base.
    • If you do not want to create a validation split, use the same image path and annotations file for validation. By default (see python train.py --help), train.py will output validation mAP for the first 5000 images in the dataset every 2 epochs.
  • Finally, in yolact_base_config in the same file, change the value for 'dataset' to 'my_custom_dataset' or whatever you named the config object above. Then you can use any of the training commands in the previous section.

Creating a Custom Dataset from Scratch

See this nice post by @Amit12690 for tips on how to annotate a custom dataset and prepare it for use with YOLACT.

Citation

If you use YOLACT or this code base in your work, please cite

@inproceedings{yolact-iccv2019,
  author    = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  title     = {YOLACT: {Real-time} Instance Segmentation},
  booktitle = {ICCV},
  year      = {2019},
}

For YOLACT++, please cite

@article{yolact-plus-tpami2020,
  author  = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title   = {YOLACT++: Better Real-time Instance Segmentation}, 
  year    = {2020},
}

Contact

For questions about our paper or code, please contact Daniel Bolya.

Owner
Daniel Bolya
Daniel Bolya
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
wlad 2 Dec 19, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022