RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

Overview

RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

BLOG | PAPER | VIDEO

Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes,
Alex X. Lee*, Coline Devin*, Yuxiang Zhou*, Thomas Lampe*, Konstantinos Bousmalis*, Jost Tobias Springenberg*, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, Francesco Nori.
In Conference on Robot Learning (CoRL), 2021.

The RGB environment

This repository contains an implementation of the simulation environment described in the paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes". Note that this is a re-implementation of the environment (to remove dependencies on internal libraries). As a result, not all the features described in the paper are available at this point. Noticeably, domain randomization is not included in this release. We also aim to provide reference performance metrics of trained policies on this environment in the near future.

In this environment, the agent controls a robot arm with a parallel gripper above a basket, which contains three objects β€” one red, one green, and one blue, hence the name RGB. The agent's task is to stack the red object on top of the blue object, within 20 seconds, while the green object serves as an obstacle and distraction. The agent controls the robot using a 4D Cartesian controller. The controlled DOFs are x, y, z and rotation around the z axis. The simulation is a MuJoCo environment built using the Modular Manipulation (MoMa) framework.

Corresponding method

The RGB-stacking paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes" also contains a description and thorough evaluation of our initial solution to both the 'Skill Mastery' (training on the 5 designated test triplets and evaluating on them) and the 'Skill Generalization' (training on triplets of training objects and evaluating on the 5 test triplets). Our approach was to first train a state-based policy in simulation via a standard RL algorithm (we used MPO) followed by interactive distillation of the state-based policy into a vision-based policy (using a domain randomized version of the environment) that we then deployed to the robot via zero-shot sim-to-real transfer. We finally improved the policy further via offline RL based on data collected from the sim-to-real policy (we used CRR). For details on our method and the results please consult the paper.

Installing and visualizing the environment

Please ensure that you have a working MuJoCo200 installation and a valid MuJoCo licence.

  1. Clone this repository:

    git clone https://github.com/deepmind/rgb_stacking.git
    cd rgb_stacking
  2. Prepare a Python 3 environment - venv is recommended.

    python3 -m venv rgb_stacking_venv
    source rgb_stacking_venv/bin/activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Run the environment viewer:

    python -m rgb_stacking.main

Step 2-4 can also be done by running the run.sh script:

./run.sh

Specifying the object triplet

The default environment will load with Triplet 4 (see Sect. 3.2.1 in the paper). If you wish to use a different triplet you can use the following commands:

from rgb_stacking import environment

env = environment.rgb_stacking(object_triplet=NAME_OF_SET)

The possible NAME_OF_SET are:

  • rgb_test_triplet{i} where i is one of 1, 2, 3, 4, 5: Loads test triplet i.
  • rgb_test_random: Randomly loads one of the 5 test triplets.
  • rgb_train_random: Triplet comprised of blocks from the training set.
  • rgb_heldout_random: Triplet comprised of blocks from the held-out set.

For more information on the blocks and the possible options, please refer to the rgb_objects repository.

Specifying the observation space

By default, the observations exposed by the environment are only the ones we used for training our state-based agents. To use another set of observations please use the following code snippet:

from rgb_stacking import environment

env = environment.rgb_stacking(
    observations=environment.ObservationSet.CHOSEN_SET)

The possible CHOSEN_SET are:

  • STATE_ONLY: Only the state observations, used for training expert policies from state in simulation (stage 1).
  • VISION_ONLY: Only image observations.
  • ALL: All observations.
  • INTERACTIVE_IMITATION_LEARNING: Pair of image observations and a subset of proprioception observations, used for interactive imitation learning (stage 2).
  • OFFLINE_POLICY_IMPROVEMENT: Pair of image observations and a subset of proprioception observations, used for the one-step offline policy improvement (stage 3).

Real RGB-Stacking Environment: CAD models and assembly instructions

The CAD model of the setup is available in onshape.

We also provide the following documents for the assembly of the real cell:

  • Assembly instructions for the basket.
  • Assembly instructions for the robot.
  • Assembly instructions for the cell.
  • The bill of materials of all the necessary parts.
  • A diagram with the wiring of cell.

The RGB-objects themselves can be 3D-printed using the STLs available in the rgb_objects repository.

Citing

If you use rgb_stacking in your work, please cite the accompanying paper:

@inproceedings{lee2021rgbstacking,
    title={Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes},
    author={Alex X. Lee and
            Coline Devin and
            Yuxiang Zhou and
            Thomas Lampe and
            Konstantinos Bousmalis and
            Jost Tobias Springenberg and
            Arunkumar Byravan and
            Abbas Abdolmaleki and
            Nimrod Gileadi and
            David Khosid and
            Claudio Fantacci and
            Jose Enrique Chen and
            Akhil Raju and
            Rae Jeong and
            Michael Neunert and
            Antoine Laurens and
            Stefano Saliceti and
            Federico Casarini and
            Martin Riedmiller and
            Raia Hadsell and
            Francesco Nori},
    booktitle={Conference on Robot Learning (CoRL)},
    year={2021},
    url={https://openreview.net/forum?id=U0Q8CrtBJxJ}
}
Owner
DeepMind
DeepMind
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: ν•œκ΅­μ–΄ TL;DR PyTorch built from source can be x4 faster than a naΓ―ve PyTorch install. This repos

Joonhyung Lee/μ΄μ€€ν˜• 651 Dec 12, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022