Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Overview

Clothes Parsing

Overview

This code provides an implementation of the research paper:

  A High Performance CRF Model for Clothes Parsing
  Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun
  Asian Conference on Computer Vision (ACCV), 2014

The code here allows training and testing of a model that got state-of-the-art results on the Fashionista dataset at the time of publication.

License

  Copyright (C) <2014> <Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun>

  This work is licensed under the Creative Commons
  Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy
  of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or
  send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

  Edgar Simo-Serra, Institut de Robotica i Informatica Industrial (CSIC/UPC), December 2014.
  [email protected], http://www-iri.upc.es/people/esimo/

Installation

In order to get started first checkout out the source code and then extract the features:

# Check out the git and cd into it as working directory
git clone https://github.com/bobbens/clothes_parsing.git
cd clothes_parsing
# Get and unpack the necessary features
wget http://hi.cs.waseda.ac.jp/~esimo//data/poseseg.tar.bz2
tar xvjf poseseg.tar.bz2 

The dSP dependency must also be compiled. This can be done by:

cd lib/dSP_5.1
make # First edit the Makefile if necessary

Usage

You can reproduce results simply by running from Matlab:

sm = segmodel( 'PROFILE', '0.16', 'use_real_pose', false ); % Load the model, parameters can be set here
sm = sm.train_misc_unaries(); % Trains some misc stuff
sm = sm.train_MRF(); % Actually sets up and trains the CRF
R = sm.test_MRF_segmentation() % Performs testing and outputs results

This should generate an output like:

 BUILDING MRF OUTPUT 29 CLASSES (REAL POSE=0)...
 UNARIES:
    bgbias
    logreg:       29
    cpmc_logreg:  29
    cpmc
    shapelets
 HIGHER ORDER
    similarity
    limbs
 Initializing Image 011 / 350...   0.4 seconds!   

 ...

 Tested MRF in 319.0 seconds
 350 / 350... 

 R = 

     confusion: [29x29 double]
     order: [29x1 double]
     acc: 0.8432
     pre: [29x1 double]
     rec: [29x1 double]
     f1: [29x1 double]
     voc: [29x1 double]
     avr_pre: 0.3007
     avr_rec: 0.3292
     avr_f1: 0.3039
     avr_voc: 0.2013

Please note that due to stochastic components and differences between software versions, the numbers will not be exactly the same as the paper. For the paper all results were obtained on a linux machine running Ubuntu 12.04 with Matlab R2012a (7.14.0.739) 64-bit (glnxa64).

You can furthermore visualize the output of the model with:

sm.test_MRF_visualize( 'output/' )

This will save both the ground truth segmentations and the predicted segmentations in the directory 'output/' as shown in the paper.

If you use this code please cite:

 @InProceedings{SimoSerraACCV2014,
    author = {Edgar Simo-Serra and Sanja Fidler and Francesc Moreno-Noguer and Raquel Urtasun},
    title = {{A High Performance CRF Model for Clothes Parsing}},
    booktitle = "Proceedings of the Asian Conference on Computer Vision (2014)",
    year = 2014
 }

Acknowledgments

We would like to give our thanks to Kota Yamaguchi for his excellent code which we have used as a base for our model.

The different codes we have used (in alphabetical order):

Changelog

December 2014: Initial version 1.0 release

Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023