ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

Related tags

Deep Learningesrgan
Overview

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN]

New Updates.

We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for real-world image restoration. For example, it can also remove annoying JPEG compression artifacts.
You are recommended to have a try 😃

In the Real-ESRGAN repo,

  • You can still use the original ESRGAN model or your re-trained ESRGAN model. The model zoo in Real-ESRGAN.
  • We provide a more handy inference script, which supports 1) tile inference; 2) images with alpha channel; 3) gray images; 4) 16-bit images.
  • We also provide a Windows executable file RealESRGAN-ncnn-vulkan for easier use without installing the environment. This executable file also includes the original ESRGAN model.
  • The full training codes are also released in the Real-ESRGAN repo.

Welcome to open issues or open discussions in the Real-ESRGAN repo.

  • If you have any question, you can open an issue in the Real-ESRGAN repo.
  • If you have any good ideas or demands, please open an issue/discussion in the Real-ESRGAN repo to let me know.
  • If you have some images that Real-ESRGAN could not well restored, please also open an issue/discussion in the Real-ESRGAN repo. I will record it (but I cannot guarantee to resolve it 😛 ).

Here are some examples for Real-ESRGAN:

📖 Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

[Paper]
Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan
Applied Research Center (ARC), Tencent PCG
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences


As there may be some repos have dependency on this ESRGAN repo, we will not modify this ESRGAN repo (especially the codes).

The following is the original README:

The training codes are in 🚀 BasicSR. This repo only provides simple testing codes, pretrained models and the network interpolation demo.

BasicSR is an open source image and video super-resolution toolbox based on PyTorch (will extend to more restoration tasks in the future).
It includes methods such as EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, etc. It now also supports StyleGAN2.

Enhanced Super-Resolution Generative Adversarial Networks

By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, Chen Change Loy

We won the first place in PIRM2018-SR competition (region 3) and got the best perceptual index. The paper is accepted to ECCV2018 PIRM Workshop.

🚩 Add Frequently Asked Questions.

For instance,

  1. How to reproduce your results in the PIRM18-SR Challenge (with low perceptual index)?
  2. How do you get the perceptual index in your ESRGAN paper?

BibTeX

@InProceedings{wang2018esrgan,
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    month = {September},
    year = {2018}
}

The RRDB_PSNR PSNR_oriented model trained with DF2K dataset (a merged dataset with DIV2K and Flickr2K (proposed in EDSR)) is also able to achive high PSNR performance.

Method Training dataset Set5 Set14 BSD100 Urban100 Manga109
SRCNN 291 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
EDSR DIV2K 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
RCAN DIV2K 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/ 0.8087 31.22/ 0.9173
RRDB(ours) DF2K 32.73/0.9011 28.99/0.7917 27.85/0.7455 27.03/0.8153 31.66/0.9196

Quick Test

Dependencies

  • Python 3
  • PyTorch >= 1.0 (CUDA version >= 7.5 if installing with CUDA. More details)
  • Python packages: pip install numpy opencv-python

Test models

  1. Clone this github repo.
git clone https://github.com/xinntao/ESRGAN
cd ESRGAN
  1. Place your own low-resolution images in ./LR folder. (There are two sample images - baboon and comic).
  2. Download pretrained models from Google Drive or Baidu Drive. Place the models in ./models. We provide two models with high perceptual quality and high PSNR performance (see model list).
  3. Run test. We provide ESRGAN model and RRDB_PSNR model and you can config in the test.py.
python test.py
  1. The results are in ./results folder.

Network interpolation demo

You can interpolate the RRDB_ESRGAN and RRDB_PSNR models with alpha in [0, 1].

  1. Run python net_interp.py 0.8, where 0.8 is the interpolation parameter and you can change it to any value in [0,1].
  2. Run python test.py models/interp_08.pth, where models/interp_08.pth is the model path.

Perceptual-driven SR Results

You can download all the resutls from Google Drive. ( ✔️ included; not included; TODO)

HR images can be downloaed from BasicSR-Datasets.

Datasets LR ESRGAN SRGAN EnhanceNet CX
Set5 ✔️ ✔️ ✔️ ✔️
Set14 ✔️ ✔️ ✔️ ✔️
BSDS100 ✔️ ✔️ ✔️ ✔️
PIRM
(val, test)
✔️ ✔️ ✔️ ✔️
OST300 ✔️ ✔️ ✔️
urban100 ✔️ ✔️ ✔️
DIV2K
(val, test)
✔️ ✔️ ✔️

ESRGAN

We improve the SRGAN from three aspects:

  1. adopt a deeper model using Residual-in-Residual Dense Block (RRDB) without batch normalization layers.
  2. employ Relativistic average GAN instead of the vanilla GAN.
  3. improve the perceptual loss by using the features before activation.

In contrast to SRGAN, which claimed that deeper models are increasingly difficult to train, our deeper ESRGAN model shows its superior performance with easy training.

Network Interpolation

We propose the network interpolation strategy to balance the visual quality and PSNR.

We show the smooth animation with the interpolation parameters changing from 0 to 1. Interestingly, it is observed that the network interpolation strategy provides a smooth control of the RRDB_PSNR model and the fine-tuned ESRGAN model.

   

Qualitative Results

PSNR (evaluated on the Y channel) and the perceptual index used in the PIRM-SR challenge are also provided for reference.

Ablation Study

Overall visual comparisons for showing the effects of each component in ESRGAN. Each column represents a model with its configurations in the top. The red sign indicates the main improvement compared with the previous model.

BN artifacts

We empirically observe that BN layers tend to bring artifacts. These artifacts, namely BN artifacts, occasionally appear among iterations and different settings, violating the needs for a stable performance over training. We find that the network depth, BN position, training dataset and training loss have impact on the occurrence of BN artifacts.

Useful techniques to train a very deep network

We find that residual scaling and smaller initialization can help to train a very deep network. More details are in the Supplementary File attached in our paper.

The influence of training patch size

We observe that training a deeper network benefits from a larger patch size. Moreover, the deeper model achieves more improvement (∼0.12dB) than the shallower one (∼0.04dB) since larger model capacity is capable of taking full advantage of larger training patch size. (Evaluated on Set5 dataset with RGB channels.)

Owner
Xintao
Researcher at Tencent ARC Lab, (Applied Research Center)
Xintao
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022