VOGUE: Try-On by StyleGAN Interpolation Optimization

Overview

VOGUE: Try-On by StyleGAN Interpolation Optimization

 	Kathleen M Lewis1,2		Srivatsan Varadharajan1		Ira Kemelmacher-Shlizerman1,3
  		1Google Research	    2MIT CSAIL	       3University of Washington

Figure 1: VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples. Bottom: pants try-on synthesized by our method. Note how our method preserves the identity of the person while allowing high detail garment try on.

Abstract

Given an image of a target person and an image of another person wearing a garment, we automatically generate the target person in the given garment. At the core of our method is a pose-conditioned StyleGAN2 latent space interpolation, which seamlessly combines the areas of interest from each image, i.e., body shape, hair, and skin color are derived from the target person, while the garment with its folds, material properties, and shape comes from the garment image. By automatically optimizing for interpolation coefficients per layer in the latent space, we can perform a seamless, yet true to source, merging of the garment and target person. Our algorithm allows for garments to deform according to the given body shape, while preserving pattern and material details. Experiments demonstrate state-of-theart photo-realistic results at high resolution (512 x 512).

VOGUE Method

We train a pose-conditioned StyleGAN2 network that outputs RGB images and segmentations.

After training our modified StyleGAN2 network, we run an optimization method to learn interpolation coefficients for each style block. These interpolation coefficients are used to combine style codes of two different images and semantically transfer a region of interest from one image to another. This method can be used for generated StyleGAN2 images or on real images by first projecting the real images into the latent space.

Figure 2: The try-on optimization setup illustrated here takes two latent codes z+1 and z+2 (representing two input images) and a pose heatmap as input into a pose-conditioned StyleGAN2 generator (gray). The generator produces the try-on image and its corresponding segmentation by interpolating between the latent codes using the interpolation-coefficients q. By minimizing the loss function over the space of interpolation coefficients, we are able to transfer garment(s) g from a garment image Ig, to the person image Ip.

Generated Image Try-On

VOGUE can transfer garments between different poses and body shapes. It preserves garment details (shape, pattern, color, texture) and person identity (hair, skin color, pose).

Shirt Try-On

With VOGUE, the same person can try on shirts of different styles (above). The identity of the person is preserved. When transferring a shorter garment or a different neckline, VOGUE is able to synthesize skin that is realistic and consistent with identity (below).


Different people can also try on the same shirt (below). The characteristics of the shirt are preserved across different poses and people.

Pants Try-On

Projected Image Try-On

Virtual try-on between two real images is possible by first projecting the two images into the StyleGAN Z+ latent space. Improving projection is an active area of research.

Shirt Try-On

Comparison with SOTA

Wang, Bochao, et al. "Toward characteristic-preserving image-based virtual try-on network." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Men, Yifang, et al. "Controllable person image synthesis with attribute-decomposed gan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Acknowledgements

We thank Edo Collins, Hao Peng, Jiaming Liu, Daniel Bauman, and Blake Farmer for their support of this work.



Feel free to ask any questions, open a PR if you feel something can be done differently!

🌟 Star this repository 🌟

Created by Charmve & maiwei.ai Community | Deployed on Kaggle

Owner
Wei ZHANG
I'm a Post-Bachelor in B.E. & B.A. , founder of @MaiweiAI Lab and @DeepVTuber. My research interests lie at Computer Vision and Machine Learning.
Wei ZHANG
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023