This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Overview

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Link to paper

Abstract

We study prediction of future outcomes with supervised models that use privileged information during learning. The privileged information comprises samples of time series observed between the baseline time of prediction and the future outcome; this information is only available at training time which differs from the traditional supervised learning. Our question is when using this privileged data leads to more sample-efficient learning of models that use only baseline data for predictions at test time. We give an algorithm for this setting and prove that when the time series are drawn from a non-stationary Gaussian-linear dynamical system of fixed horizon, learning with privileged information is more efficient than learning without it. On synthetic data, we test the limits of our algorithm and theory, both when our assumptions hold and when they are violated. On three diverse real-world datasets, we show that our approach is generally preferable to classical learning, particularly when data is scarce. Finally, we relate our estimator to a distillation approach both theoretically and empirically.

Requirements

Required libraries found in requirements.txt

Models

Baseline and LUPTS are implemented using sklearn, the code is found in /src/model/

Evaluation

Synthethic

To re-produce experiments, run /notebooks/synthetic.ipynb Necessary experiment code is found in /src/synthetic/

Forecasting Air Quality

To re-produce experiments, run /notebooks/fivecities.ipynb Necessary experiment code is found in /src/fivecities/

The data is found in /data/fivecities/, but can also be downloaded from here.

Modeling Progression of Chronic Disease

Note: For the Alzheimerโ€™s and Multiple myeloma progression modeling tasks, the data is not publicly available, but the code which produced the results is still found in this repository.

Alzheimer's progression modelling

Code is found in /notebooks/ADNI.ipynb and /src/adni/

Multiple myeloma progression modelling

Code is found in /notebooks/mm-prfs.ipynb and /notebooks/mm-tr.ipynb

Owner
Rickard Karlsson
PhD student in machine learning & causal inference. Previously: BSc in physics, MSc in maths and NASA intern ๐Ÿš€
Rickard Karlsson
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese ็ฎ€ไฝ“ไธญๆ–‡็‰ˆ or in Korean ํ•œ๊ตญ์–ด or in Japanese ๆ—ฅๆœฌ่ชž. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022