AITUS - An atomatic notr maker for CYTUS

Related tags

Deep LearningAITUS
Overview

AITUS

an automatic note maker for CYTUS.

利用AI根据指定乐曲生成CYTUS游戏谱面。

效果展示:https://www.bilibili.com/video/BV1Lf4y1F7aq

这只是作者的一个初次尝试,欢迎感兴趣的小伙伴进行优化或提出新方法!

共享链接

下面的3、4部分介绍了AITUS的使用方法,比较繁琐,且需要安装许多软件。鉴于此,作者在这里设置了一个共享链接,用于分享AITUS创作的游戏谱面。

链接:https://pan.baidu.com/s/1dGaLOuBKdeXBRZt1NuP9WA?pwd=aicy 提取码:aicy

您可以私信给作者您想要创作谱面的乐曲,作者生成谱面后会上传到这个链接里。

前置准备

使用AITUS一共需要以下软件作为辅助:

  • 格式工厂(或其他音频文件格式转化软件)
  • MixMeister BPM Analyzer,用于获取乐曲bpm
  • Cylheim,CYTUS游戏谱面制作器
  • Python3
  • PyTorch2

使用说明

【step 1】

将乐曲转为wav格式。

【step 2】

使用软件【MixMeister BPM Analyzer】测量乐曲的bpm。

【step 3】

使用【Cylheim】创建空谱面,创建空谱面时需要导入乐曲、bpm等信息。创建好的谱面是一个json文件。该json文件的命名应与乐曲文件的命名相同。

【step 4】

将创建好的谱面json文件、乐曲wav文件、model下的四个pt文件、code下的【NoteMake.py】放在同一目录下,并修改【NoteMake.py】中如下图所示的乐曲信息:

image-20220119105537401

然后运行NoteMake.py,约5-10分钟后运行结束,得到生成的json谱面文件(命名与乐曲命名相同)。

【step 5】

用生成的json去替换原【Cylheim】项目下的json文件,然后打开【Cylheim】项目即可看见和演示生成的谱面。

原理简介

训练数据来自CYTUS

训练所用的乐曲和谱面信息来自CYTUS。

从音乐到图像

为了利用CNN,将读入的一段乐曲信号按顺序转化为若干80×80的图片,并根据谱面文件的信息给每张图打tag。

分工训练

为了生成游戏谱面,一共训练了四个模型:

ExistModel:判断一张图是否有key。

PosModel:如果一张图中有key,判断这个key的横坐标。

TypeModel:如果一张图中有key,判断这个key的类型(由于CYTUS1代只有click、hold、chain三种类型的key,因此AITUS目前也只考虑了这三种类型)。

TimeModel:如果一张图中对应的key是hold,判断这个hold的持续的时间。

一些调整

生成的谱面谱面并不那么如意,因此在【NoteMake.py】中还对模型的输出结果做了调整(详情请见代码)。

Owner
GradiusTwinbee
GradiusTwinbee
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023