DualGAN-tensorflow: tensorflow implementation of DualGAN

Overview

ICCV paper of DualGAN

DualGAN: unsupervised dual learning for image-to-image translation

please cite the paper, if the codes has been used for your research.

architecture of DualGAN

architecture

How to setup

Prerequisites

  • Linux

  • Python (2.7 or later)

  • numpy

  • scipy

  • NVIDIA GPU + CUDA 8.0 + CuDNN v5.1

  • TensorFlow 1.0 or later

Getting Started

steps

  • clone this repo:
git clone https://github.com/duxingren14/DualGAN.git

cd DualGAN
  • download datasets (e.g., sketch-photo), run:
bash ./datasets/download_dataset.sh sketch-photo
  • download pre-trained model (e.g., sketch-photo), run:
bash ./checkpoint/download_ckpt.sh sketch-photo
  • train the model:
python main.py --phase train --dataset_name sketch-photo --image_size 256 --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100
  • test the model:
python main.py --phase test --dataset_name sketch-photo --image_size 256 --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

optional

Similarly, run experiments on facades dataset with the following commands:

bash ./datasets/download_dataset.sh facades

python main.py --phase train --dataset_name facades --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

python main.py --phase test --dataset_name facades --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

For thoese who cannot download datasets or pretrained models using the scripts, please try manual downloading from the link as below:

all datasets from google drive

pretrained models from google drive

Experimental results:

day2night da2ni la2ph ph2la sk2ph ph2sk ch2oi oi2ch

Acknowledgments

Codes are built on the top of pix2pix-tensorflow and DCGAN-tensorflow. Thanks for their precedent contributions!

Owner
Jack Yi
Jack Yi started programming in 2007. His mission is to make the creation of visual contents easier.
Jack Yi
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022