Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Open in Streamlit Open In Colab

스크린샷 2021-07-04 오후 4 11 51

This project attempted to implement the paper Putting NeRF on a Diet (DietNeRF) in JAX/Flax. DietNeRF is designed for rendering quality novel views in few-shot learning scheme, a task that vanilla NeRF (Neural Radiance Field) struggles. To achieve this, the author coins Semantic Consistency Loss to supervise DietNeRF by prior knowledge from CLIP Vision Transformer. Such supervision enables DietNeRF to learn 3D scene reconstruction with CLIP's prior knowledge on 2D views.

Besides this repo, you can check our write-up and demo here:

🤩 Demo

  1. You can check out our demo in Hugging Face Space
  2. Or you can set up our Streamlit demo locally (model checkpoints will be fetched automatically upon startup)
pip install -r requirements_demo.txt
streamlit run app.py

Streamlit Demo

Implementation

Our code is written in JAX/ Flax and mainly based upon jaxnerf from Google Research. The base code is highly optimized in GPU & TPU. For semantic consistency loss, we utilize pretrained CLIP Vision Transformer from transformers library.

To learn more about DietNeRF, our experiments and implementation, you are highly recommended to check out our very detailed Notion write-up!

스크린샷 2021-07-04 오후 4 11 51

🤗 Hugging Face Model Hub Repo

You can also find our project and our model checkpoints on our Hugging Face Model Hub Repository. The models checkpoints are located in models folder.

Our JAX/Flax implementation currently supports:

Platform Single-Host GPU Multi-Device TPU
Type Single-Device Multi-Device Single-Host Multi-Host
Training Supported Supported Supported Supported
Evaluation Supported Supported Supported Supported

💻 Installation

# Clone the repo
git clone https://github.com/codestella/putting-nerf-on-a-diet
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name jaxnerf python=3.6.12; conda activate jaxnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install requirements
pip install -r requirements.txt
# [Optional] Install GPU and TPU support for Jax
# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
!pip install --upgrade jax "jax[cuda110]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# install flax and flax-transformer
pip install flax transformers[flax]

Dataset

Download the datasets from the NeRF official Google Drive. Please download the nerf_synthetic.zip and unzip them in the place you like. Let's assume they are placed under /tmp/jaxnerf/data/.

🤟 How to Train

  1. Train in our prepared Colab notebook: Colab Pro is recommended, otherwise you may encounter out-of-memory
  2. Train locally: set use_semantic_loss=true in your yaml configuration file to enable DietNeRF.
python -m train \
  --data_dir=/PATH/TO/YOUR/SCENE/DATA \ # (e.g. nerf_synthetic/lego)
  --train_dir=/PATH/TO/THE/PLACE/YOU/WANT/TO/SAVE/CHECKPOINTS \
  --config=configs/CONFIG_YOU_LIKE

💎 Experimental Results

Rendered Rendering images by 8-shot learned DietNeRF

DietNeRF has a strong capacity to generalise on novel and challenging views with EXTREMELY SMALL TRAINING SAMPLES!

HOTDOG / DRUM / SHIP / CHAIR / LEGO / MIC

Rendered GIF by occluded 14-shot learned NeRF and Diet-NeRF

We made artificial occlusion on the right side of image (Only picked left side training poses). The reconstruction quality can be compared with this experiment. DietNeRF shows better quality than Original NeRF when It is occluded.

Training poses

LEGO

Diet NeRF NeRF

SHIP

Diet NeRF NeRF

👨‍👧‍👦 Our Team

Teams Members
Project Managing Stella Yang To Watch Our Project Progress, Please Check Our Project Notion
NeRF Team Stella Yang, Alex Lau, Seunghyun Lee, Hyunkyu Kim, Haswanth Aekula, JaeYoung Chung
CLIP Team Seunghyun Lee, Sasikanth Kotti, Khalid Sifullah , Sunghyun Kim
Cloud TPU Team Alex Lau, Aswin Pyakurel, JaeYoung Chung, Sunghyun Kim

*Special mention to our "night owl" contributors 🦉 : Seunghyun Lee, Alex Lau, Stella Yang, Haswanth Aekula

💞 Social Impact

  • Game Industry
  • Augmented Reality Industry
  • Virtual Reality Industry
  • Graphics Industry
  • Online shopping
  • Metaverse
  • Digital Twin
  • Mapping / SLAM

🌱 References

This project is based on “JAX-NeRF”.

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

This project is based on “Putting NeRF on a Diet”.

@misc{jain2021putting,
      title={Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis}, 
      author={Ajay Jain and Matthew Tancik and Pieter Abbeel},
      year={2021},
      eprint={2104.00677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🔑 License

Apache License 2.0

❤️ Special Thanks

Our Project is motivated by HuggingFace X GoogleAI (JAX) Community Week Event 2021.

We would like to take this chance to thank Hugging Face for organizing such an amazing open-source initiative, Suraj and Patrick for all the technical help. We learn a lot throughout this wonderful experience!

스크린샷 2021-07-04 오후 4 11 51

Finally, we would like to thank Common Computer AI for sponsoring our team access to V100 multi-GPUs server. Thank you so much for your support!

스크린샷

Owner
Stella Seoyeon Yang's New Github Account for Research. Ph.D. Candidate Student in SNU, CV lab.
5 Jan 05, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022