Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

Overview

CNNs fruits360

GitHub GitHub Repo stars GitHub repo size

Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNN on a pretrained model

Build a CNN on a pretrained model, ResNet50.
Finetune the pretrained model when training my CNN.

定義卷積神經網路架構:

def fruit_model_on_pretrained(height,width,channel):
    model = Sequential(name="fruit_pretrained")

    pretrained = tf.keras.applications.resnet.ResNet50(include_top=False,input_shape=(100,100,3))
    model.add(pretrained)
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(16, activation='relu'))
    model.add(Dense(16, activation='relu'))
    model.add(Dense(2,activation='softmax'))
    pretrained.trainable = False
    model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),optimizer='adam', metrics=['accuracy'])
    return model

    model = fruit_model_on_pretrained(100,100,3)
    model.summary()

CNN's neural architecture include ResBlock

Build a CNN whose neural architecture includes ResBlock.

定義卷積神經網路架構:

images = keras.layers.Input(x_train.shape[1:])

x = keras.layers.Conv2D(filters=16, kernel_size=[1,1], padding='same')(images)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_1")(net)
x = keras.layers.Conv2D(filters=32, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])net=keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_2")(net)

x = keras.layers.Conv2D(filters=64, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.Activation("relu", name="block_3")(net)

net = keras.layers.BatchNormalization()(net)
net = keras.layers.Dropout(0.25)(net)

net = keras.layers.GlobalAveragePooling2D()(net)
net = keras.layers.Dense(units=nclasses,activation="softmax")(net)

model = keras.models.Model(inputs=images,outputs=net)
model.summary()

License:MIT

This package is MIT licensed.

Owner
Ricky Chuang
Google DSC Lead at NTOU
Ricky Chuang
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022