Facilitates implementing deep neural-network backbones, data augmentations

Overview

Introduction

Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common way was to find a repo and reimplement them. Thus, it is really hard for them to speed up the implementation of a big project in which requires a continuous try-end-error process to find the best model. general_backbone is launched to facilitate for implementation of deep neural-network backbones, data augmentations, optimizers, and learning schedulers that all in one package. Finally, you can quick-win the training process. Below are these supported sectors in the current version:

  • backbones
  • loss functions
  • augumentation styles
  • optimizers
  • schedulers
  • data types
  • visualizations

Installation

Refer to docs/installation.md for installion of general_backbone package.

Model backbone

Currently, general_backbone supports more than 70 type of resnet models such as: resnet18, resnet34, resnet50, resnet101, resnet152, resnext50.

All models is supported can be found in general_backbone.list_models() function:

import general_backbone
general_backbone.list_models()

Results

{'resnet': ['resnet18', 'resnet18d', 'resnet34', 'resnet34d', 'resnet26', 'resnet26d', 'resnet26t', 'resnet50', 'resnet50d', 'resnet50t', 'resnet101', 'resnet101d', 'resnet152', 'resnet152d', 'resnet200', 'resnet200d', 'tv_resnet34', 'tv_resnet50', 'tv_resnet101', 'tv_resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext50d_32x4d', 'resnext101_32x4d', 'resnext101_32x8d', 'resnext101_64x4d', 'tv_resnext50_32x4d', 'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d', 'ssl_resnet18', 'ssl_resnet50', 'ssl_resnext50_32x4d', 'ssl_resnext101_32x4d', 'ssl_resnext101_32x8d', 'ssl_resnext101_32x16d', 'swsl_resnet18', 'swsl_resnet50', 'swsl_resnext50_32x4d', 'swsl_resnext101_32x4d', 'swsl_resnext101_32x8d', 'swsl_resnext101_32x16d', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet50t', 'seresnet101', 'seresnet152', 'seresnet152d', 'seresnet200d', 'seresnet269d', 'seresnext26d_32x4d', 'seresnext26t_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d', 'seresnext101_32x8d', 'senet154', 'ecaresnet26t', 'ecaresnetlight', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'resnetblur18', 'resnetblur50', 'resnetrs50', 'resnetrs101', 'resnetrs152', 'resnetrs200', 'resnetrs270', 'resnetrs350', 'resnetrs420']}

To select your backbone type, you set model=resnet50 in train_config of your config file. An example config file general_backbone/configs/image_clf_config.py.

Dataset

A toy dataset is provided at toydata for your test training. It has a structure organized as below:

toydata/
└── image_classification
    ├── test
    │   ├── cat
    │   └── dog
    └── train
        ├── cat
        └── dog

Inside each folder cat and dog is the images. If you want to add a new class, you just need to create a new folder with the folder's name is label name inside train and test folder.

Data Augmentation

general_backbone package support many augmentations style for training. It is efficient and important to improve model accuracy. Some of common augumentations is below:

Augumentation Style Parameters Description
Pixel-level transforms
Blur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a random-sized kernel
GaussNoise {'var_limit':(10.0, 50.0), 'mean':0, 'per_channel':True, 'always_apply':False, 'p':0.5} Apply gaussian noise to the input image
GaussianBlur {'blur_limit':(3, 7), 'sigma_limit':0, 'always_apply':False, 'p':0.5} Blur the input image using a Gaussian filter with a random kernel size
GlassBlur {'sigma': 0.7, 'max_delta':4, 'iterations':2, 'always_apply':False, 'mode':'fast', 'p':0.5} Apply glass noise to the input image
HueSaturationValue {'hue_shift_limit':20, 'sat_shift_limit':30, 'val_shift_limit':20, 'always_apply':False, 'p':0.5} Randomly change hue, saturation and value of the input image
MedianBlur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a median filter with a random aperture linear size
RGBShift {'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5} Randomly shift values for each channel of the input RGB image.
Normalize {'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)} Normalization is applied by the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value)
Spatial-level transforms
RandomCrop {'height':128, 'width':128} Crop a random part of the input
VerticalFlip {'p': 0.5} Flip the input vertically around the x-axis
ShiftScaleRotate {'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5} Randomly apply affine transforms: translate, scale and rotate the input
RandomBrightnessContrast {'brightness_limit':0.2, 'contrast_limit':0.2, 'brightness_by_max':True, 'always_apply':False,'p': 0.5} Randomly change brightness and contrast of the input image

Augumentation is configured in the configuration file general_backbone/configs/image_clf_config.py:

data_conf = dict(
    dict_transform = dict(
        SmallestMaxSize={'max_size': 160},
        ShiftScaleRotate={'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5},
        RandomCrop={'height':128, 'width':128},
        RGBShift={'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5},
        RandomBrightnessContrast={'p': 0.5},
        Normalize={'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)},
        ToTensorV2={'always_apply':True}
    )
)

You can add a new transformation step in data_conf['dict_transform'] and they are transformed in order from top-down. You can also debug your transformation by setup debug=True:

from general_backbone.data import AugmentationDataset
augdataset = AugmentationDataset(data_dir='toydata/image_classification',
                            name_split='train',
                            config_file = 'general_backbone/configs/image_clf_config.py', 
                            dict_transform=None, 
                            input_size=(256, 256), 
                            debug=True, 
                            dir_debug = 'tmp/alb_img_debug', 
                            class_2_idx=None)

for i in range(50):
    img, label = augdataset.__getitem__(i)

In default, the augmentation images output is saved in tmp/alb_img_debug to you review before train your models. the code tests augmentation image is available in debug/transform_debug.py:

conda activate gen_backbone
python debug/transform_debug.py

Train model

To train model, you run file tools/train.py. There are variaty of config for your training such as --model, --batch_size, --opt, --loss, --sched. We supply to you a standard configuration file to train your model through --config. general_backbone/configs/image_clf_config.py is for image classification task. You can change value inside this file or add new parameter as you want but without changing the name and structure of file.

python3 tools/train.py --config general_backbone/configs/image_clf_config.py

Results:

Model resnet50 created, param count:25557032
Train: 0 [   0/33 (  0%)]  Loss: 8.863 (8.86)  Time: 1.663s,    9.62/s  (1.663s,    9.62/s)  LR: 5.000e-04  Data: 0.460 (0.460)
Train: 0 [  32/33 (100%)]  Loss: 1.336 (4.00)  Time: 0.934s,    8.57/s  (0.218s,   36.68/s)  LR: 5.000e-04  Data: 0.000 (0.014)
Test: [   0/29]  Time: 0.560 (0.560)  Loss:  0.6912 (0.6912)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.041 (0.064)  Loss:  0.5951 (0.5882)  [email protected]: 81.2500 (87.5000)  [email protected]: 100.0000 (99.3750)
Train: 1 [   0/33 (  0%)]  Loss: 0.5741 (0.574)  Time: 0.645s,   24.82/s  (0.645s,   24.82/s)  LR: 5.000e-04  Data: 0.477 (0.477)
Train: 1 [  32/33 (100%)]  Loss: 0.5411 (0.313)  Time: 0.089s,   90.32/s  (0.166s,   48.17/s)  LR: 5.000e-04  Data: 0.000 (0.016)
Test: [   0/29]  Time: 0.537 (0.537)  Loss:  0.3071 (0.3071)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.043 (0.066)  Loss:  0.1036 (0.1876)  [email protected]: 100.0000 (93.9583)  [email protected]: 100.0000 (100.0000)

Table of config parameters is in training.

Your model checkpoint and log are saved in the same path of --output directory. A tensorboard visualization is created in order to facilitate manage and control training process. As default, folder of tensorboard is runs that insides --output. The loss, accuracy, learning rate and batch time on both train and test are logged:

tensorboard --logdir checkpoint/resnet50/20211023-092651-resnet50-224/runs/

Inference

To inference model, you can pass relevant values to --img, --config and --initial-checkpoint.

python tools/inference.py --img demo/cat0.jpg --config general_backbone/configs/image_clf_config.py --initial-checkpoint checkpoint.pth.tar

TODO

Packages reference:

There are many open sources package we refered to build up general_backbone:

  • timm: PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

  • albumentations: is a Python library for image augmentation.

  • mmcv: MMCV is a foundational library for computer vision research and supports many research projects.

Citation

If you find this project is useful in your reasearch, kindly consider cite:

@article{genearal_backbone,
    title={GeneralBackbone:  A handy package for implementing Deep Learning Backbone},
    author={khanhphamdinh},
    email= {[email protected]},
    year={2021}
}
You might also like...
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Releases(v0.2.1)
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021