Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Overview

Multimodal Temporal Context Network (MTCN)

This repository implements the model proposed in the paper:

Evangelos Kazakos, Jaesung Huh, Arsha Nagrani, Andrew Zisserman, Dima Damen, With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021

Project webpage

arXiv paper

Citing

When using this code, kindly reference:

@INPROCEEDINGS{kazakos2021MTCN,
  author={Kazakos, Evangelos and Huh, Jaesung and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
  booktitle={British Machine Vision Conference (BMVC)},
  title={With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition},
  year={2021}}

NOTE

Although we train MTCN using visual SlowFast features extracted from a model trained with video clips of 2s, at Table 3 of our paper and Table 1 of Appendix (Table 6 in the arXiv version) where we compare MTCN with SOTA, the results of SlowFast are from [1] where the model is trained with video clips of 1s. In the following table, we provide the results of SlowFast trained with 2s, for a direct comparison as we use this model to extract the visual features.

alt text

Requirements

Project's requirements can be installed in a separate conda environment by running the following command in your terminal: $ conda env create -f environment.yml.

Features

The extracted features for each dataset can be downloaded using the following links:

EPIC-KITCHENS-100:

EGTEA:

Pretrained models

We provide pretrained models for EPIC-KITCHENS-100:

  • Audio-visual transformer link
  • Language model link

Ground-truth

Train

EPIC-KITCHENS-100

To train the audio-visual transformer on EPIC-KITCHENS-100, run:

python train_av.py --dataset epic-100 --train_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_train.hdf5 
--val_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_val.hdf5 
--train_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_train.pkl 
--val_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--batch-size 32 --lr 0.005 --optimizer sgd --epochs 100 --lr_steps 50 75 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --classification_mode all --seq_len 9

To train the language model on EPIC-KITCHENS-100, run:

python train_lm.py --dataset epic-100 --train_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_train.pkl 
--val_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--verb_csv /path/to/epic-kitchens-100-annotations/EPIC_100_verb_classes.csv
--noun_csv /path/to/epic-kitchens-100-annotations/EPIC_100_noun_classes.csv
--batch-size 64 --lr 0.001 --optimizer adam --epochs 100 --lr_steps 50 75 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --num_gram 9 --dropout 0.1

EGTEA

To train the visual-only transformer on EGTEA (EGTEA does not have audio), run:

python train_av.py --dataset egtea --train_hdf5_path /path/to/egtea/features/visual_slowfast_features_train_split1.hdf5
--val_hdf5_path /path/to/egtea/features/visual_slowfast_features_test_split1.hdf5
--train_pickle /path/to/EGTEA_annotations/train_split1.pkl --val_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--batch-size 32 --lr 0.001 --optimizer sgd --epochs 50 --lr_steps 25 38 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --classification_mode all --seq_len 9

To train the language model on EGTEA,

python train_lm.py --dataset egtea --train_pickle /path/to/EGTEA_annotations/train_split1.pkl
--val_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--action_csv /path/to/EGTEA_annotations/actions_egtea.csv
--batch-size 64 --lr 0.001 --optimizer adam --epochs 50 --lr_steps 25 38 --output_dir /path/to/output_dir 
--num_layers 4 -j 8 --num_gram 9 --dropout 0.1

Test

EPIC-KITCHENS-100

To test the audio-visual transformer on EPIC-KITCHENS-100, run:

python test_av.py --dataset epic-100 --test_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_val.hdf5
--test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl
--checkpoint /path/to/av_model/av_checkpoint.pyth --seq_len 9 --num_layers 4 --output_dir /path/to/output_dir
--split validation

To obtain scores of the model on the test set, simply use --test_hdf5_path /path/to/epic-kitchens-100/features/audiovisual_slowfast_features_test.hdf5, --test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_test_timestamps.pkl and --split test instead. Since the labels for the test set are not available the script will simply save the scores without computing the accuracy of the model.

To evaluate your model on the validation set, follow the instructions in this link. In the same link, you can find instructions for preparing the scores of the model for submission in the evaluation server and obtain results on the test set.

Finally, to filter out improbable sequences using LM, run:

python test_av_lm.py --dataset epic-100
--test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_validation.pkl 
--test_scores /path/to/audio-visual-results.pkl
--checkpoint /path/to/lm_model/lm_checkpoint.pyth
--num_gram 9 --split validation

Note that, --test_scores /path/to/audio-visual-results.pkl are the scores predicted from the audio-visual transformer. To obtain scores on the test set, use --test_pickle /path/to/epic-kitchens-100-annotations/EPIC_100_test_timestamps.pkl and --split test instead.

Since we are providing the trained models for EPIC-KITCHENS-100, av_checkpoint.pyth and lm_checkpoint.pyth in the test scripts above could be either the provided pretrained models or model_best.pyth that is the your own trained model.

EGTEA

To test the visual-only transformer on EGTEA, run:

python test_av.py --dataset egtea --test_hdf5_path /path/to/egtea/features/visual_slowfast_features_test_split1.hdf5
--test_pickle /path/to/EGTEA_annotations/test_split1.pkl
--checkpoint /path/to/v_model/model_best.pyth --seq_len 9 --num_layers 4 --output_dir /path/to/output_dir
--split test_split1

To filter out improbable sequences using LM, run:

python test_av_lm.py --dataset egtea
--test_pickle /path/to/EGTEA_annotations/test_split1.pkl 
--test_scores /path/to/visual-results.pkl
--checkpoint /path/to/lm_model/model_best.pyth
--num_gram 9 --split test_split1

In each case, you can extract attention weights by simply including --extract_attn_weights at the input arguments of the test script.

References

[1] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, , Antonino Furnari, Jian Ma,Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, andMichael Wray, Rescaling Egocentric Vision: Collection Pipeline and Challenges for EPIC-KITCHENS-100, IJCV, 2021

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022