PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

Overview

PyDeepFakeDet

An integrated and scalable library for Deepfake detection research.

Introduction

PyDeepFakeDet is an integrated and scalable Deepfake detection tool developed by Fudan Vision and Learning Lab. The goal is to provide state-of-the-art Deepfake detection Models as well as interfaces for the training and evaluation of new Models on commonly used Deepfake datasets.

This repository includes implementations of both CNN-based and Transformer-based methods:

Model Zoo and Baselines

The baseline Models on three versions of FF-DF dataset are provided.

Method RAW C23 C40 Model
ResNet50 97.61 94.87 84.95 RAW / C23 / C40
Xception 97.84 95.24 86.27 RAW / C23 / C40
EfficientNet-b4 97.89 95.61 87.12 RAW / C23 / C40
Meso4 85.14 77.14 60.13 RAW / C23 / C40
MesoInception4 95.45 84.13 71.31 RAW / C23 / C40
GramNet 97.65 95.16 86.21 RAW / C23 / C40
F3Net 99.95 97.52 90.43 RAW / C23 / C40
MAT 97.90 95.59 87.06 RAW / C23 / C40
ViT 96.72 93.45 82.97 RAW / C23 / C40
M2TR 99.50 97.93 92.89 RAW / C23 / C40

The baseline Models on Celeb-DF is also available.

Method Celeb-DF Model
ResNet50 98.51 CelebDF
Xception 99.05 CelebDF
EfficientNet-b4 99.44 CelebDF
Meso4 73.04 CelebDF
MesoInception4 75.87 CelebDF
GramNet 98.67 CelebDF
F3Net 96.47 CelebDF
MAT 99.02 CelebDF
ViT 96.73 CelebDF
M2TR 99.76 CelebDF

Installation

  • We use Python == 3.9.0, torch==1.11.0, torchvision==1.12.0.

  • Install the required packages by:

    pip install -r requirements.txt

Data Preparation

Please follow the instructions in DATASET.md to prepare the data.

Quick Start

Specify the path of your local dataset in ./configs/resnet50.yaml, and then run:

python run.py --cfg resnet50.yaml

Visualization tools

Please refer to VISUALIZE.md for detailed instructions.

Contributors

PyDeepFakeDet is written and maintained by Wenhao Ouyang, Chao Zhang, Zhenxin Li, and Junke Wang.

License

PyDeepFakeDet is released under the MIT license.

Citations

@inproceedings{wang2021m2tr,
  title={M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection},
  author={Wang, Junke and Wu, Zuxuan and Ouyang, Wenhao and Han, Xintong and Chen, Jingjing and Lim, Ser-Nam and Jiang, Yu-Gang},
  booktitle={ICMR},
  year={2022}
}
Owner
Junke, Wang
I'm a first-year Ph.D. student in the school of computer science at Fudan University, supervised by Prof. Zuxuan Wu and Prof. Yu-Gang Jiang.
Junke, Wang
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022