Character Controllers using Motion VAEs

Overview

Character Controllers using Motion VAEs

This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at our project website https://www.cs.ubc.ca/~hyuling/projects/mvae/.

Quick Start

This library should run on Linux, Mac, or Windows.

Install Requirements

# TODO: Create and activate virtual env

cd MotionVAEs
pip install -r requirements
NOTE: installing pybullet requires Visual C++ 14 or higher. You can get it from here: https://visualstudio.microsoft.com/visual-cpp-build-tools/

Run Pretrained Models

Run pretrained models using the play scripts. The results are rendered in PyBullet. Use mouse to control camera. Hit r reset task and g for additional controls.

cd vae_motion

# Random Walk
python play_mvae.py --vae models/posevae_c1_e6_l32.pt

# Control Tasks: {Target, Joystick, PathFollow, HumanMaze}Env-v0
python play_controller.py --dir models --env TargetEnv-v0

Train from Scratch

Train models from scratch using train scripts.

The train_mvae.py script assumes the mocap data to be at environments/mocap.npz. The original training data is not included in this repo; but can be easily extracted from other public datasets. Please refer to our paper for more detail on the input format. All training parameters can be set inside main() in the code.

Use train_controller.py to train controllers on top of trained MVAE models. The trained model path, control task, and learning hyperparameters can be set inside main() in the code. The task names follow the same convention as above, e.g. TargetEnv-v0, JoystickEnv-v0, and so on.

Citation

Please cite the following paper if you find our work useful.

@article{ling2020character,
  author    = {Ling, Hung Yu and Zinno, Fabio and Cheng, George and van de Panne, Michiel},
  title     = {Character Controllers Using Motion VAEs},
  year      = {2020},
  publisher = {Association for Computing Machinery},
  volume    = {39},
  number    = {4},
  journal   = {ACM Trans. Graph.}
}
Owner
Electronic Arts
Electronic Arts
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023