Byzantine-robust decentralized learning via self-centered clipping

Overview

Byzantine-robust decentralized learning via self-centered clipping

In this paper, we study the challenging task of Byzantine-robust decentralized training on arbitrary communication graphs. Unlike federated learning where workers communicate through a server, workers in the decentralized environment can only talk to their neighbors, making it harder to reach consensus. We identify a novel dissensus attack in which few malicious nodes can take advantage of information bottlenecks in the topology to poison the collaboration. To address these issues, we propose a Self-Centered Clipping (SSClip) algorithm for Byzantine-robust consensus and optimization, which is the first to provably converge to a $O(\delta_{\max}\zeta^2/\gamma^2)$ neighborhood of the stationary point for non-convex objectives under standard assumptions. Finally, we demonstrate the encouraging empirical performance of SSClip under a large number of attacks.

Table of contents

Code organization

The structure of the repository is as follows:

  • codes/
    • Source code.
  • outputs/
    • Store the output of the launcher scripts.
  • consensus.ipynb: Study the error of aggregators to the average consensus under dissensus attack.
    • This notebook generates Fig. 3 in the main text and Fig. 8 in the appendix.
  • dumbbell.py: Study how topology + heterogeneity influence on the aggregators.
  • dumbbell_improvement.py: Study how to help aggregators to address topology + heterogeneity influence.
  • dumbbell.ipynb: Plot the results of dumbbell.py and dumbbell_improvement.py.
    • Generate Fig. 4 in the main text.
  • optimization_delta.py: Fix p, zeta^2 and varying delta of dissensus attack for SCClip aggregator.
    • Generate Fig. 5 in the main text.
  • honest_majority.py: Study the influence of honest majority in the text.
    • Generate Fig. 6 in the main text.

Reproduction

To reproduce the results in the paper, do the following steps

  1. Add codes/ to environment variable PYTHONPATH
  2. Install the dependencies: pip install -r requirements.txt
  3. Run bash run.sh and select option 2 to 9 to generate the code.
  4. The output will be saved to the corresponding folders under outputs

Note that if the GPU memory is small (e.g. less than 16 GB), then running the previous commands may raise insufficient exception. In this case, one can decrease the level parallelism in the script by changing the order of loops and reduce the number of parallel processes.

License

This repo is covered under The MIT License.

Reference

TODO

Owner
EPFL Machine Learning and Optimization Laboratory
EPFL Machine Learning and Optimization Laboratory
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022