Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Related tags

Deep LearningSDR
Overview

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference

This repo is the implementation for SDR.

 

Tested environment

  • Python 3.7
  • PyTorch 1.7
  • CUDA 11.0

Lower CUDA and PyTorch versions should work as well.

 

Contents

License, Security, support and code of conduct specifications are under the Instructions directory.  

Installation

Run

bash instructions/installation.sh 

 

Datasets

The published datasets are:

  • Video games
    • 21,935 articles
    • Expert annotated test set. 90 articles with 12 ground-truth recommendations.
    • Examples:
      • Grand Theft Auto - Mafia
      • Burnout Paradise - Forza Horizon 3
  • Wines
    • 1635 articles
    • Crafted by a human sommelier, 92 articles with ~10 ground-truth recommendations.
    • Examples:
      • Pinot Meunier - Chardonnay
      • Dom Pérignon - Moët & Chandon

For more details and direct download see Wines and Video Games.

 

Training

The training process downloads the datasets automatically.

python sdr_main.py --dataset_name video_games

The code is based on PyTorch-Lightning, all PL hyperparameters are supported. (limit_train/val/test_batches, check_val_every_n_epoch etc.)

Tensorboard support

All metrics are being logged automatically and stored in

SDR/output/document_similarity/SDR/arch_SDR/dataset_name_<dataset>/<time_of_run>

Run tesnroboard --logdir=<path> to see the the logs.

 

Inference

The hierarchical inference described in the paper is implemented as a stand-alone service and can be used with any backbone algorithm (models/reco/hierarchical_reco.py).

 

python sdr_main.py --dataset_name <name> --resume_from_checkpoint <checkpoint> --test_only

Results

Citing & Authors

If you find this repository or the annotated datasets helpful, feel free to cite our publication -

SDR: Self-Supervised Document-to-Document Similarity Ranking viaContextualized Language Models and Hierarchical Inference

 @misc{ginzburg2021selfsupervised,
     title={Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference}, 
     author={Dvir Ginzburg and Itzik Malkiel and Oren Barkan and Avi Caciularu and Noam Koenigstein},
     year={2021},
     eprint={2106.01186},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}

Contact: Dvir Ginzburg, Itzik Malkiel.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022