StyleGAN2-ada for practice

Overview

StyleGAN2-ada for practice

Open In Colab

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + PyTorch 1.7.1, requires FFMPEG for sequence-to-video conversions. For more explicit details refer to the original implementations.

Here is previous Tensorflow-based version, which produces compatible models (but not vice versa).
I still prefer it for few-shot training (~100 imgs), and for model surgery tricks (not ported here yet).

Features

  • inference (image generation) in arbitrary resolution (finally with proper padding on both TF and Torch)
  • multi-latent inference with split-frame or masked blending
  • non-square aspect ratio support (auto-picked from dataset; resolution must be divisible by 2**n, such as 512x256, 1280x768, etc.)
  • transparency (alpha channel) support (auto-picked from dataset)
  • using plain image subfolders as conditional datasets
  • funky "digression" inference technique, ported from Aydao

Few operation formats ::

  • Windows batch-files, described below (if you're on Windows with powerful GPU)
  • local Jupyter notebook (for non-Windows platforms)
  • Colab notebook (max ease of use, requires Google drive)

Just in case, original StyleGAN2-ada charms:

  • claimed to be up to 30% faster than original StyleGAN2
  • has greatly improved training (requires 10+ times fewer samples)
  • has lots of adjustable internal training settings
  • works with plain image folders or zip archives (instead of custom datasets)
  • should be easier to tweak/debug

Training

  • Put your images in data as subfolder or zip archive. Ensure they all have the same color channels (monochrome, RGB or RGBA).
    If needed, first crop square fragments from source video or directory with images (feasible method, if you work with patterns or shapes, rather than compostions):
 multicrop.bat source 512 256 

This will cut every source image (or video frame) into 512x512px fragments, overlapped with 256px shift by X and Y. Result will be in directory source-sub, rename it as you wish. If you edit the images yourself (e.g. for non-square aspect ratios), ensure their correct size. For conditional model split the data by subfolders (mydata/1, mydata/2, ..).

  • Train StyleGAN2-ada on the prepared dataset (image folder or zip archive):
 train.bat mydata

This will run training process, according to the settings in src/train.py (check and explore those!!). Results (models and samples) are saved under train directory, similar to original Nvidia approach. For conditional model add --cond option.

Please note: we save both compact models (containing only Gs network for inference) as -...pkl (e.g. mydata-512-0360.pkl), and full models (containing G/D/Gs networks for further training) as snapshot-...pkl. The naming is for convenience only.

Length of the training is defined by --lod_kimg X argument (training duration per layer/LOD). Network with base resolution 1024px will be trained for 20 such steps, for 512px - 18 steps, et cetera. Reasonable lod_kimg value for full training from scratch is 300-600, while for finetuning 20-40 is sufficient. One can override this approach, setting total duration directly with --kimg X.

If you have troubles with custom cuda ops, try removing their cached version (C:\Users\eps\AppData\Local\torch_extensions on Windows).

  • Resume training on mydata dataset from the last saved model at train/000-mydata-512-.. directory:
 train_resume.bat mydata 000-mydata-512-..
  • Uptrain (finetune) well-trained model ffhq-512.pkl on new data:
 train_resume.bat newdata ffhq-512.pkl

No need to count exact steps in this case, just stop when you're ok with the results (it's better to set low lod_kimg to follow the progress).

Generation

Generated results are saved as sequences and videos (by default, under _out directory).

  • Test the model in its native resolution:
 gen.bat ffhq-1024.pkl
  • Generate custom animation between random latent points (in z space):
 gen.bat ffhq-1024 1920-1080 100-20

This will load ffhq-1024.pkl from models directory and make a 1920x1080 px looped video of 100 frames, with interpolation step of 20 frames between keypoints. Please note: omitting .pkl extension would load custom network, effectively enabling arbitrary resolution, multi-latent blending, etc. Using filename with extension will load original network from PKL (useful to test foreign downloaded models). There are --cubic and --gauss options for animation smoothing, and few --scale_type choices. Add --save_lat option to save all traversed dlatent w points as Numpy array in *.npy file (useful for further curating).

  • Generate more various imagery:
 gen.bat ffhq-1024 3072-1024 100-20 -n 3-1

This will produce animated composition of 3 independent frames, blended together horizontally (similar to the image in the repo header). Argument --splitfine X controls boundary fineness (0 = smoothest).

Instead of simple frame splitting, one can load external mask(s) from b/w image file (or folder with file sequence):

 gen.bat ffhq-1024 1024-1024 100-20 --latmask _in/mask.jpg

Arguments --digress X would add some animated funky displacements with X strength (by tweaking initial const layer params). Arguments --trunc X controls truncation psi parameter, as usual.

NB: Windows batch-files support only 9 command arguments; if you need more options, you have to edit batch-file itself.

  • Project external images onto StyleGAN2 model dlatent points (in w space):
 project.bat ffhq-1024.pkl photo

The result (found dlatent points as Numpy arrays in *.npy files, and video/still previews) will be saved to _out/proj directory.

  • Generate smooth animation between saved dlatent points (in w space):
 play_dlatents.bat ffhq-1024 dlats 25 1920-1080

This will load saved dlatent points from _in/dlats and produce a smooth looped animation between them (with resolution 1920x1080 and interpolation step of 25 frames). dlats may be a file or a directory with *.npy or *.npz files. To select only few frames from a sequence somename.npy, create text file with comma-delimited frame numbers and save it as somename.txt in the same directory (check examples for FFHQ model). You can also "style" the result: setting --style_dlat blonde458.npy will load dlatent from blonde458.npy and apply it to higher layers, producing some visual similarity. --cubic smoothing and --digress X displacements are also applicable here.

  • Generate animation from saved point and feature directions (say, aging/smiling/etc for FFHQ model) in dlatent w space:
 play_vectors.bat ffhq-1024.pkl blonde458.npy vectors_ffhq

This will load base dlatent point from _in/blonde458.npy and move it along direction vectors from _in/vectors_ffhq, one by one. Result is saved as looped video.

Credits

StyleGAN2: Copyright © 2021, NVIDIA Corporation. All rights reserved.
Made available under the Nvidia Source Code License-NC
Original paper: https://arxiv.org/abs/2006.06676

Owner
vadim epstein
vadim epstein
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023