Source code of the paper Meta-learning with an Adaptive Task Scheduler.

Related tags

Deep LearningATS
Overview

ATS

About

Source code of the paper Meta-learning with an Adaptive Task Scheduler.

If you find this repository useful in your research, please cite the following paper:

@inproceedings{yao2021adaptive,
  title={Meta-learning with an Adaptive Task Scheduler},
  author={Yao, Huaxiu and Wang, Yu and Wei, Ying and Zhao, Peilin and Mahdavi, Mehrdad and Lian, Defu and Finn, Chelsea},
  booktitle={Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems},
  year={2021} 
}

Miniimagenet

The processed miniimagenet dataset could be downloaded here. Assume the dataset has been downloaded and unzipped to /data/miniimagenet, which has the following file structure:

-- miniimagenet  // /data/miniimagenet
  -- miniImagenet
    -- train_task_id.pkl
    -- test_task_id.pkl
    -- mini_imagenet_train.pkl
    -- mini_imagenet_test.pkl
    -- mini_imagenet_val.pkl
    -- training_classes_20000_2_new.npz
    -- training_classes_20000_4_new.npz

Then $datadir in the following code sould be set to /data/miniimagenet.

ATS with noise = 0.6

We need to first pretrain the model with no noise. The model has been uploaded to this repo. You can also pretrain the model by yourself. The script for pretraining is as follows:
(1) 1 shot:

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.0

(2) 5 shot:

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.0

Then move the model to the current directory:
(1) 1 shot:

mv $logdir/ANIL_pytorch.data_miniimagenetcls_5.mbs_2.ubs_1.metalr0.001.innerlr0.01.hidden32/model20000 ./model20000_1shot

(2) 5 shot:

mv $logdir/ANIL_pytorch.data_miniimagenetcls_5.mbs_2.ubs_5.metalr0.001.innerlr0.01.hidden32/model10000 ./model10000_5shot

Then with this model, we could run the uniform sampling and ATS sampling. For ATS, the script is:
(1) 1 shot

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0 --num_classes 5 --metatrain_iterations 30000 --replace 0 --noise 0.6 --logdir $logdir --sampling_method ATS --buffer_size 10  --temperature 0.1 --scheduler_lr 0.001 --warmup 2000 --pretrain_iter 20000

(2) 5 shot

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --replace 0 --noise 0.6 --logdir $logdir --sampling_method ATS --buffer_size 10 --utility_function sample --temperature 0.1 --scheduler_lr 0.001 --warmup 2000 --pretrain_iter 10000

For uniform sampling, we need to use the validation set to finetune the model trained under uniform sampling. The training commands are:
(1) 1 shot

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0 --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.6
mkdir models
mv ANIL_pytorch.data_miniimagenetcls_5.mbs_2.ubs_1.metalr0.001.innerlr0.01.hidden32_noise0.6/model30000 ./models/ANIL_0.4_model_1shot
python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0 --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.6 --finetune

(2) 5 shot

python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.6
mkdir models  // if directory "models" does not exist
mv ANIL_pytorch.data_miniimagenetcls_5.mbs_2.ubs_5.metalr0.001.innerlr0.01.hidden32_noise0.6/model30000 ./models/ANIL_0.4_model_5shot
python3 main.py --meta_batch_size 2 --datasource miniimagenet --datadir $datadir --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --logdir $logdir --noise 0.6 --finetune

ATS with limited budgets

In this setting, pretraining is not needed. You can directly run the following code:
uniform sampling, 1 shot

python3 main.py --meta_batch_size 3 --datasource miniimagenet --datadir ./miniimagenet/ --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --limit_data 1 --logdir ../train_logs --limit_classes 16

uniform sampling, 5 shot

python3 main.py --meta_batch_size 3 --datasource miniimagenet --datadir ./miniimagenet/ --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --limit_data 1 --logdir ../train_logs --limit_classes 16

ATS 1 shot

python3 main.py --meta_batch_size 3 --datasource miniimagenet --datadir ./miniimagenet/ --num_updates 5 --num_updates_test 10 --update_batch_size 1 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --replace 0 --limit_data 1 --logdir ../train_logs --sampling_method ATS --buffer_size 6 --utility_function sample --temperature 1 --warmup 0 --limit_classes 16

ATS 5 shot

python3 main.py --meta_batch_size 3 --datasource miniimagenet --datadir ./miniimagenet/ --num_updates 5 --num_updates_test 10 --update_batch_size 5 --update_batch_size_eval 15 --resume 0  --num_classes 5 --metatrain_iterations 30000 --replace 0 --limit_data 1 --logdir ../train_logs --sampling_method ATS --buffer_size 6 --utility_function sample --temperature 0.1 --warmup 0 --limit_classes 16

Drug

The processed dataset could be downloaded here. Assume the dataset has been downloaded and unzipped to /data/drug which has the following structure:

-- drug  // /data/drug
  -- ci9b00375_si_001.txt  
  -- compound_fp.npy               
  -- drug_split_id_group2.pickle  
  -- drug_split_id_group6.pickle
  -- ci9b00375_si_002.txt  
  -- drug_split_id_group17.pickle  
  -- drug_split_id_group3.pickle  
  -- drug_split_id_group9.pickle
  -- ci9b00375_si_003.txt  
  -- drug_split_id_group1.pickle   
  -- drug_split_id_group4.pickle  
  -- important_readme.md

Then $datadir in the following script should be set as /data/.

ATS with noise=4.

Uniform Sampling:

python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --noise 4 --data_dir $datadir
python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --noise 4 --data_dir $datadir --train 0

ATS:

python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --sampling_method ATS --noise 4 --data_dir $datadir
python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --sampling_method ATS --noise 4 --data_dir $datadir --train 0

ATS with full budgets

Uniform Sampling:

python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --data_dir $datadir
python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --data_dir $datadir --train 0

ATS:

python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --sampling_method ATS --data_dir $datadir
python3 main.py --datasource=drug --metatrain_iterations=20 --update_lr=0.005 --meta_lr=0.001 --num_updates=5 --test_num_updates=5 --trial=1 --drug_group=17 --sampling_method ATS --data_dir $datadir --train 0

For ATS, if you need to use 1 for calculating the loss as the input of the scheduler instead of 1, you can add --simple_loss after the script above.

Owner
Huaxiu Yao
Postdoctoral Scholar at [email protected]
Huaxiu Yao
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021