Official PyTorch Implementation of SSMix (Findings of ACL 2021)

Related tags

Deep Learningssmix
Overview

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021)

Official PyTorch Implementation of SSMix | Paper


SSMix

Abstract

Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we propose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on the wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification.

Code Structure

|__ augmentation/ --> augmentation methods by method type
    |__ __init__.py --> wrapper for all augmentation methods. Contains metric used for single & paired sentence tasks
    |__ saliency.py --> Calculates saliency by L2 norm gradient backpropagation
    |__ ssmix.py --> Output ssmix sentence with options such as no span and no saliency given two input sentence with additional information
    |__ unk.py --> Output randomly replaced unk sentence 
|__ read_data/ --> Module used for loading data
    |__ __init__.py --> wrapper function for getting data split by train and valid depending on dataset type
    |__  dataset.py --> Class to get NLU dataset
    |__ preprocess.py --> preprocessor that makes input, label, and accuracy metric depending on dataset type
|__ trainer.py --> Code that does actual training 
|__ run_train.py --> Load hyperparameter, initiate training, pipeline
|__ classifiation_model.py -> Augmented from huggingface modeling_bert.py. Define BERT architectures that can handle multiple inputs for Tmix

Part of code is modified from the MixText implementation.

Getting Started

pip install -r requirements.txt

Code is runnable on both CPU and GPU, but we highly recommended to run on GPU. Strictly following the versions specified in the requirements.txt file is desirable to sucessfully execute our code without errors.

Model Training

python run_train.py --batch_size ${BSZ} --seed ${SEED} --dataset {DATASET} --optimizer_lr ${LR} ${MODE}

For all our experiments, we use 32 as the batch size (BSZ), and perform five different runs by changing the seed (SEED) from 0 to 4. We experiment on a wide range of text classifiction datasets (DATASET): 'sst2', 'qqp', 'mnli', 'qnli', 'rte', 'mrpc', 'trec-coarse', 'trec-fine', 'anli'. You should set --anli_round argument to one of 1, 2, 3 for the ANLI dataset.

Once you run the code, trained checkpoints are created under checkpoints directory. To train a model without mixup, you have to set MODE to 'normal'. To run with mixup approaches including our SSMix, you should set MODE as the name of the mixup method ('ssmix', 'tmix', 'embedmix', 'unk'). We load the checkpoint trained without mixup before training with mixup. We use 5e-5 for the normal mode and 1e-5 for mixup methods as the learning rate (LR).

You can modify the argument values (e.g., embed_alpha, hidden_alpha, etc) to adjust to your training hyperparameter needs. For ablation study of SSMix, you can exclude salieny constraint (--ss_no_saliency) or span constraint (--ss_no_span). Type python run_train.py --help or check run_train.py to see the full list of available hyperparameters. For debugging or analysis, you can turn on verbose options (--verbose and --verbose_show_augment_example).

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022