Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Overview

Infinitely Deep Bayesian Neural Networks with SDEs

This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stochastic variational inference. A rudimentary JAX implementation of differentiable SDE solvers is also provided, refer to torchsde [2] for a full set of differentiable SDE solvers in Pytorch and similarly to torchdiffeq [3] for differentiable ODE solvers.

Continuous-depth hidden unit trajectories in Neural ODE vs uncertain posterior dynamics SDE-BNN.

Installation

This library runs on jax==0.1.77 and torch==1.6.0. To install all other requirements:

pip install -r requirements.txt

Note: Package versions may change, refer to official JAX installation instructions here.

JaxSDE: Differentiable SDE Solvers in JAX

The jaxsde library contains SDE solvers in the Ito and Stratonovich form. Solvers of different orders can be specified with the following method={euler_maruyama|milstein|euler_heun} (strong orders 0.5|1|0.5 and orders 1|1|1 in the case of an additive noise SDE). Stochastic adjoint (sdeint_ito) training mode does not work efficiently yet, use sdeint_ito_fixed_grid for now. Tradeoff solver speed for precision during training or inference by adjusting --nsteps <# steps>.

Usage

Default solver: Backpropagation through the solver.

from jaxsde.jaxsde.sdeint import sdeint_ito_fixed_grid

y1 = sdeint_ito_fixed_grid(f, g, y0, ts, rng, fw_params, method="euler_maruyama")

Stochastic adjoint: Using O(1) memory instead of solving an adjoint SDE in the backward pass.

from jaxsde.jaxsde.sdeint import sdeint_ito

y1 = sdeint_ito(f, g, y0, ts, rng, fw_params, method="milstein")

Brax: Bayesian SDE Framework in JAX

Implementation of composable Bayesian layers in the stax API. Our SDE Bayesian layers can be used with the SDEBNN block composed with multiple parameterizations of time-dependent layers in diffeq_layers. Sticking-the-landing (STL) trick can be enabled during training with --stl for improving convergence rate. Augment the inputs by a custom amount --aug <integer>, set the number of samples averaged over with --nsamples <integer>. If memory constraints pose a problem, train in gradient accumulation mode: --acc_grad and gradient checkpointing: --remat.

Samples from SDEBNN-learned predictive prior and posterior density distributions.

Usage

All examples can be swapped in with different vision datasets. For better readability, tensorboard logging has been excluded (see torchbnn instead).

Toy 1D regression to learn complex posteriors:

python examples/jax/sdebnn_toy1d.py --ds cos --activn swish --loss laplace --kl_scale 1. --diff_const 0.2 --driftw_scale 0.1 --aug_dim 2 --stl --prior_dw ou

Image Classification:

To train an SDEBNN model:

python examples/jax/sdebnn_classification.py --output <output directory> --model sdenet --aug 2 --nblocks 2-2-2 --diff_coef 0.2 --fx_dim 64 --fw_dims 2-64-2 --nsteps 20 --nsamples 1

To train a ResNet baseline, specify --model resnet and for a Bayesian ResNet baseline, specify --meanfield_sdebnn.

TorchBNN: SDE-BNN in Pytorch

A PyTorch implementation of the Brax framework powered by the torchsde backend.

Usage

All examples can be swapped in with different vision datasets and includes tensorboard logging for critical metrics.

Toy 1D regression to learn multi-modal posterior:

python examples/torch/sdebnn_toy1d.py --output_dir <dst_path>

Arbitrarily expression approximate posteriors from learning non-Gaussian marginals.

Image Classification:

All hyperparameters can be found in the training script. Train with adjoint for memory efficient backpropagation and adaptive mode for adaptive computation (and ensure --adjoint_adaptive True if training with adjoint and adaptive modes).

python examples/torch/sdebnn_classification.py --train-dir <output directory> --data cifar10 --dt 0.05 --method midpoint --adjoint True --adaptive True --adjoint_adaptive True --inhomogeneous True

References

[1] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud. "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations." Preprint 2021. [arxiv]

[2] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud. "Scalable Gradients for Stochastic Differential Equations." AISTATS 2020. [arxiv]

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud. "Neural Ordinary Differential Equations." NeurIPS. 2018. [arxiv]


If you found this library useful in your research, please consider citing

@article{xu2021sdebnn,
  title={Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations},
  author={Xu, Winnie and Chen, Ricky T. Q. and Li, Xuechen and Duvenaud, David},
  archivePrefix = {arXiv},
  year={2021}
}
Owner
Winnie Xu
Undergrad in CS/Stats/Math '22 @ UToronto. Working on something secret @cohere-ai. Deep neural networks @for-ai @VectorInstitute. Prev. @google-research @NVIDIA
Winnie Xu
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022