Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Overview

Infinitely Deep Bayesian Neural Networks with SDEs

This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stochastic variational inference. A rudimentary JAX implementation of differentiable SDE solvers is also provided, refer to torchsde [2] for a full set of differentiable SDE solvers in Pytorch and similarly to torchdiffeq [3] for differentiable ODE solvers.

Continuous-depth hidden unit trajectories in Neural ODE vs uncertain posterior dynamics SDE-BNN.

Installation

This library runs on jax==0.1.77 and torch==1.6.0. To install all other requirements:

pip install -r requirements.txt

Note: Package versions may change, refer to official JAX installation instructions here.

JaxSDE: Differentiable SDE Solvers in JAX

The jaxsde library contains SDE solvers in the Ito and Stratonovich form. Solvers of different orders can be specified with the following method={euler_maruyama|milstein|euler_heun} (strong orders 0.5|1|0.5 and orders 1|1|1 in the case of an additive noise SDE). Stochastic adjoint (sdeint_ito) training mode does not work efficiently yet, use sdeint_ito_fixed_grid for now. Tradeoff solver speed for precision during training or inference by adjusting --nsteps <# steps>.

Usage

Default solver: Backpropagation through the solver.

from jaxsde.jaxsde.sdeint import sdeint_ito_fixed_grid

y1 = sdeint_ito_fixed_grid(f, g, y0, ts, rng, fw_params, method="euler_maruyama")

Stochastic adjoint: Using O(1) memory instead of solving an adjoint SDE in the backward pass.

from jaxsde.jaxsde.sdeint import sdeint_ito

y1 = sdeint_ito(f, g, y0, ts, rng, fw_params, method="milstein")

Brax: Bayesian SDE Framework in JAX

Implementation of composable Bayesian layers in the stax API. Our SDE Bayesian layers can be used with the SDEBNN block composed with multiple parameterizations of time-dependent layers in diffeq_layers. Sticking-the-landing (STL) trick can be enabled during training with --stl for improving convergence rate. Augment the inputs by a custom amount --aug <integer>, set the number of samples averaged over with --nsamples <integer>. If memory constraints pose a problem, train in gradient accumulation mode: --acc_grad and gradient checkpointing: --remat.

Samples from SDEBNN-learned predictive prior and posterior density distributions.

Usage

All examples can be swapped in with different vision datasets. For better readability, tensorboard logging has been excluded (see torchbnn instead).

Toy 1D regression to learn complex posteriors:

python examples/jax/sdebnn_toy1d.py --ds cos --activn swish --loss laplace --kl_scale 1. --diff_const 0.2 --driftw_scale 0.1 --aug_dim 2 --stl --prior_dw ou

Image Classification:

To train an SDEBNN model:

python examples/jax/sdebnn_classification.py --output <output directory> --model sdenet --aug 2 --nblocks 2-2-2 --diff_coef 0.2 --fx_dim 64 --fw_dims 2-64-2 --nsteps 20 --nsamples 1

To train a ResNet baseline, specify --model resnet and for a Bayesian ResNet baseline, specify --meanfield_sdebnn.

TorchBNN: SDE-BNN in Pytorch

A PyTorch implementation of the Brax framework powered by the torchsde backend.

Usage

All examples can be swapped in with different vision datasets and includes tensorboard logging for critical metrics.

Toy 1D regression to learn multi-modal posterior:

python examples/torch/sdebnn_toy1d.py --output_dir <dst_path>

Arbitrarily expression approximate posteriors from learning non-Gaussian marginals.

Image Classification:

All hyperparameters can be found in the training script. Train with adjoint for memory efficient backpropagation and adaptive mode for adaptive computation (and ensure --adjoint_adaptive True if training with adjoint and adaptive modes).

python examples/torch/sdebnn_classification.py --train-dir <output directory> --data cifar10 --dt 0.05 --method midpoint --adjoint True --adaptive True --adjoint_adaptive True --inhomogeneous True

References

[1] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud. "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations." Preprint 2021. [arxiv]

[2] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud. "Scalable Gradients for Stochastic Differential Equations." AISTATS 2020. [arxiv]

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud. "Neural Ordinary Differential Equations." NeurIPS. 2018. [arxiv]


If you found this library useful in your research, please consider citing

@article{xu2021sdebnn,
  title={Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations},
  author={Xu, Winnie and Chen, Ricky T. Q. and Li, Xuechen and Duvenaud, David},
  archivePrefix = {arXiv},
  year={2021}
}
Owner
Winnie Xu
Undergrad in CS/Stats/Math '22 @ UToronto. Working on something secret @cohere-ai. Deep neural networks @for-ai @VectorInstitute. Prev. @google-research @NVIDIA
Winnie Xu
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022