Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

Overview

A Comprehensive Experimental Evaluation for Database Configuration Tuning

This is the source code to the paper "Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation". Please refer to the paper for the experimental details.

Table of Content

An Efficient Database Configuration Tuning Benchmark via Surrogate

Through the benchmark, you can evaluate the tuning optimizers' performance with minimum overhead.

Quick installation & Run

  1. Preparations: Python == 3.7

  2. Install packages and download the surrogate model

    pip install -r requirements.txt
    pip install .

The surrogate models can be found in the Google drive. To easily run the tuning benchmark, you can download the surrogate models and place them in the fold autotune/tuning_benchmark/surrogate.

  1. Run the benchmark. We use optimization over the configuration space of JOB as an example.
python run_benchmark.py --method=VBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_vbo.res
python run_benchmark.py --method=MBO   --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_mbo.res
python run_benchmark.py --method=SMAC  --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job   --lhs_log=result/job_5knobs_smac.res
python run_benchmark.py --method=TPE --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_tpe.res
python run_benchmark.py --method=TURBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_turbo.res --tr_init 
python run_benchmark.py --method=GA --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_ga.res 

Data Description

You can find all the training data for the tuning benchmark in autotune/tuning_benchmark/data.

Experimental Evaluation

Environment Installation

In our experiments, the operating system is Linux 4.9. We conduct experimets on MySQL 5.7.19.

  1. Preparations: Python == 3.7

  2. Install packages

    pip install -r requirements.txt
    pip install .
  3. Download and install MySQL 5.7.19 and boost

    wget http://sourceforge.net/projects/boost/files/boost/1.59.0/boost_1_59_0.tar.gz
    wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-boost-5.7.19.tar.gz
    
    sudo cmake . -DCMAKE_INSTALL_PREFIX=PATH_TO_INSTALL -DMYSQL_DATADIR=PATH_TO_DATA -DDEFAULT_CHARSET=utf8 -DDEFAULT_COLLATION=utf8_general_ci -DMYSQL_TCP_PORT=3306 -DWITH_MYISAM_STORAGE_ENGINE=1 -DWITH_INNOBASE_STORAGE_ENGINE=1 -DWITH_ARCHIVE_STORAGE_ENGINE=1 -DWITH_BLACKHOLE_STORAGE_ENGINE=1 -DWITH_MEMORY_STORAGE_ENGINE=1 -DENABLE_DOWNLOADS=1 -DDOWNLOAD_BOOST=1 -DWITH_BOOST=PATH_TO_BOOST;
    sudo make -j 16;
    sudo make install;

Workload Preparation

SYSBENCH

Download and install

git clone https://github.com/akopytov/sysbench.git
./autogen.sh
./configure
make && make install

Load data

sysbench --db-driver=mysql --mysql-host=$HOST --mysql-socket=$SOCK --mysql-port=$MYSQL_PORT --mysql-user=root --mysql-password=$PASSWD --mysql-db=sbtest --table_size=800000 --tables=150 --events=0 --threads=32 oltp_read_write prepare > sysbench_prepare.out

OLTP-Bench

We install OLTP-Bench to use the following workload: TPC-C, SEATS, Smallbank, TATP, Voter, Twitter, SIBench.

  • Download
git clone https://github.com/oltpbenchmark/oltpbench.git
  • To run oltpbenchmark outside the folder, modify the following file:

    • ./src/com/oltpbenchmark/DBWorkload.java (Line 85)

      pluginConfig = new XMLConfiguration("PATH_TO_OLTPBENCH/config/plugin.xml"); # modify this
      
    • ./oltpbenchmark

      
      #!/bin/bash
      
      java -Xmx8G -cp `$OLTPBENCH_HOME/classpath.sh bin` -Dlog4j.configuration=$OLTPBENCH_HOME/log4j.properties com.oltpbenchmark.DBWorkload $@
      
      
    • ./classpath.sh

      #!/bin/bash
      
      echo -ne "$OLTPBENCH_HOME/build"
      
      for i in `ls $OLTPBENCH_HOME/lib/*.jar`; do
      
          # IMPORTANT: Make sure that we do not include hsqldb v1
      
          if [[ $i =~ .*hsqldb-1.* ]]; then
      
              continue
      
          fi
      
          echo -ne ":$i"
      
      done
      
  • Install

    ant bootstrap
    ant resolve
    ant build

Join-Order-Benchmark (JOB)

Download IMDB Data Set from http://homepages.cwi.nl/~boncz/job/imdb.tgz.

Follow the instructions of https://github.com/winkyao/join-order-benchmark to load data into MySQL.

Environment Variables

Before running the experiments, the following environment variables require to be set.

export SYSBENCH_BIN=PATH_TO_sysbench/src/sysbench
export OLTPBENCH_BIN=PATH_TO_oltpbench/oltpbenchmark
export MYSQLD=PATH_TO_mysqlInstall/bin/mysqld
export MYSQL_SOCK=PATH_TO_mysql/base/mysql.sock
export MYCNF=PATH_TO_autotune/template/experiment_normandy.cnf
export DATADST=PATH_TO_mysql/data
export DATASRC=PATH_TO_mysql/data_copy

Experiments Design

All optimization methods are listed as follows:

Method String of ${METHOD}
Vanilla BO VBO
Mixed-Kernel BO MBO
Sequential Model-based Algorithm Configuration SMAC
Tree-structured Parzen Estimator TPE
Trust-Region BO TURBO
Deep Deterministic Policy Gradient DDPG
Genetic Algorithm GA

Exp.1: Tuning improvement over knob set generated by different important measurements.

Compared importance measurements: lasso, gini, fanova, ablation, shap.

To conduct the experiment shown in Figure 3(a), the script is as follows. Please specify ${lhs_log}.

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

To conduct the experiments in (b), (c), and (d), modify ${knobs_num},${method},${workload}, ${dbname}, and ${y_variable}, where

  • ${knobs_num} = 5, 20

  • ${method} = VBO, DDPG

  • ${workload} = job, sysbench

    • if ${workload} == job, then ${dbname} = imdbload, ${y_variable}=lat
    • if ${workload} == sysbench, then ${dbname} =sbtest , ${y_variable}=tps

Note${knobs_config} indicates the configuration file where knobs are ranked by importance.

  • We provide the configuration file generated on our VM: experiment/gen_knobs/${workload}_${measure}.json.
  • You can also generate new configuration file with samples in your environment.

Exp.2: Performance improvement and tuning cost when increasing the number of tuned knobs.

To conduct the experiment shown in Figure 5 (a) and 5 (b), the script is as follows.

python train.py --method=VBO --workload=job --dbname=imdbload --y_variable=lat --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO --workload=sysbench --dbname=sbtest --y_variable=tps --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/SYSBENCH_shap.json --lhs_log=${lhs_log}

Please specify ${knobs_num} and ${lhs_log}, where

  • ${knobs_num} = 5, 10, 15, 20, 30, 50, 70, 90, 197

Exp.3: Incremental Knob Selection.

Compared methods: 5 Knobs, 20 Knobs, increase, decrease.

To conduct the experiment shown in Figure 6(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO       --knobs_num=5  --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO       --knobs_num=20 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=increase --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=decrease   --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), you can

  • replace --workload=JOB --y_variable=lat with --workload=sysbench --y_variable=tps

Exp.4: Optimizer comparision on different configuration space.

Compared optimizers: VBO, MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 7(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=MBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=SMAC  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TPE   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TURBO --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=DDPG  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=GA    --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), (c), (d), (e), (f), and (g), you can

  • replace --knobs_num=5 with--knobs_num=20 or --knobs_num=197
  • replace --workload=JOB --y_variable=lat --dbname=imdbload with --workload=sysbench --y_variable=tps --dbname=sbtest

Exp.5: Comparison experiment for knobs heterogeneity.

Compared optimizers: VBO, MBO, SMAC, DDPG.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_continuous.json --lhs_log=${lhs_log} --lhs_num=10
python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_heterogeneous.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of VBO, MBO, SMAC, DDPG.

Exp.6: Algorithm overhead comparison.

Compared optimizers: MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/job_shap.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of MBO, SMAC, TPE, TURBO, DDPG, GA.

Note if you have already done Exp.4, you can skip running the above script and analyze log files in script/log/.

Exp.7: Transfering methods comparison.

Compared methods: RGPE-MBO, RGPE-SMAC, MAP-MBO, MAP-SMAC, FineTune-DDPG

To conduct the experiment shown in Table 9, there are two steps:

  • Pre-train on source workloads (Smallbank, SIBench, Voter, Seats, TATP);
  • Validate on target workloads (TPCC, SYSBENCH, Twitter).

Scripts for pre-trains is similar to the ones for Exp.4

To validate on target workloads, the scripts are as follows.

python train.py --method=MBO  --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10  
python train.py --method=MBO  --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=DDPG --params=model_params/${ddpg_params} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 

Note that

  • for RGPE- methods, you should specify --RGPE --source_repo=${repo}
  • for MAP- methods, you should specify --workload_map --source_repo=${repo}
  • for FineTune-DDPG, you should specify --params=model_params/${ddpg_params}

Project Code Overview

  • autotune/tuner.py : the implemented optimization methods.
  • autotune/dbenv.py : the interacting functions with database.
  • script/train.py : the python script to start an experiment.
  • script/experiment/gen_knob : the knob importance ranking files generated by different methods.
Owner
DAIR Lab
Data and Intelligence Research (DAIR) Lab @ Peking University
DAIR Lab
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022