Neural style transfer in PyTorch.

Overview

style-transfer-pytorch

An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs. It does automatic multi-scale (coarse-to-fine) stylization to produce high-quality high resolution stylizations, even up to print resolution if the GPUs have sufficient memory. If two GPUs are available, they can both be used to increase the maximum resolution. (Using two GPUs is not faster than using one.)

The algorithm has been modified from that in the literature by:

  • Using the PyTorch pre-trained VGG-19 weights instead of the original VGG-19 weights

  • Changing the padding mode of the first layer of VGG-19 to 'replicate', to reduce edge artifacts

  • When using average or L2 pooling, scaling the result by an empirically derived factor to ensure that the magnitude of the result stays the same on average (Gatys et al. (2015) did not do this)

  • Using an approximation to the MSE loss such that its gradient L1 norm is approximately 1 for content and style losses (in order to approximate the effects of gradient normalization, which produces better visual quality)

  • Normalizing the Gram matrices by the number of elements in each feature map channel rather than by the total number of elements (Johnson et al.) or not normalizing (Gatys et al. (2015))

  • Taking an exponential moving average over the iterates to reduce iterate noise (each new scale is initialized with the previous scale's averaged iterate)

  • Warm-starting the Adam optimizer with scaled-up versions of its first and second moment buffers at the beginning of each new scale, to prevent noise from being added to the iterates at the beginning of each scale

  • Using non-equal weights for the style layers to improve visual quality

  • Stylizing the image at progressively larger scales, each greater by a factor of sqrt(2) (this is improved from the multi-scale scheme given in Gatys et al. (2016))

Example outputs (click for the full-sized version)

Installation

Python 3.6+ is required.

PyTorch is required: follow their installation instructions before proceeding. If you do not have an Nvidia GPU, select None for CUDA. On Linux, you can find out your CUDA version using the nvidia-smi command. PyTorch packages for CUDA versions lower than yours will work, but select the highest you can.

To install style-transfer-pytorch, first clone the repository, then run the command:

pip install -e PATH_TO_REPO

This will install the style_transfer CLI tool. style_transfer uses a pre-trained VGG-19 model (Simonyan et al.), which is 548MB in size, and will download it when first run.

If you have a supported GPU and style_transfer is using the CPU, try using the argument --device cuda:0 to force it to try to use the first CUDA GPU. This should print an informative error message.

Basic usage

style_transfer CONTENT_IMAGE STYLE_IMAGE [STYLE_IMAGE ...] [-o OUTPUT_IMAGE]

Input images will be converted to sRGB when loaded, and output images have the sRGB colorspace. If the output image is a TIFF file, it will be written with 16 bits per channel. Alpha channels in the inputs will be ignored.

style_transfer has many optional arguments: run it with the --help argument to see a full list. Particularly notable ones include:

  • --web enables a simple web interface while the program is running that allows you to watch its progress. It runs on port 8080 by default, but you can change it with --port. If you just want to view the current image and refresh it manually, you can go to /image.

  • --devices manually sets the PyTorch device names. It can be set to cpu to force it to run on the CPU on a machine with a supported GPU, or to e.g. cuda:1 (zero indexed) to select the second CUDA GPU. Two GPUs can be specified, for instance --devices cuda:0 cuda:1. style_transfer will automatically use the first visible CUDA GPU, falling back to the CPU, if it is omitted.

  • -s (--end-scale) sets the maximum image dimension (height and width) of the output. A large image (e.g. 2896x2172) can take around fifteen minutes to generate on an RTX 3090 and will require nearly all of its 24GB of memory. Since both memory usage and runtime increase linearly in the number of pixels (quadratically in the value of the --end-scale parameter), users with less GPU memory or who do not want to wait very long are encouraged to use smaller resolutions. The default is 512.

  • -sw (--style-weights) specifies factors for the weighted average of multiple styles if there is more than one style image specified. These factors are automatically normalized to sum to 1. If omitted, the styles will be blended equally.

  • -cw (--content-weight) sets the degree to which features from the content image are included in the output image. The default is 0.015.

  • -tw (--tv-weight) sets the strength of the smoothness prior. The default is 2.

References

  1. L. Gatys, A. Ecker, M. Bethge (2015), "A Neural Algorithm of Artistic Style"

  2. L. Gatys, A. Ecker, M. Bethge, A. Hertzmann, E. Shechtman (2016), "Controlling Perceptual Factors in Neural Style Transfer"

  3. J. Johnson, A. Alahi, L. Fei-Fei (2016), "Perceptual Losses for Real-Time Style Transfer and Super-Resolution"

  4. A. Mahendran, A. Vedaldi (2014), "Understanding Deep Image Representations by Inverting Them"

  5. D. Kingma, J. Ba (2014), "Adam: A Method for Stochastic Optimization"

  6. K. Simonyan, A. Zisserman (2014), "Very Deep Convolutional Networks for Large-Scale Image Recognition"

Owner
Katherine Crowson
Katherine Crowson
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022