Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

Related tags

Deep Learningaccentor
Overview

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues

Overview

ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialogues from Schema Guided Dialogue (SGD) and MultiWOZ 2.1, allowing researchers to study contexutal addition of chit-chat utterances for virtual assistants, to make task-oriented dialogues more engaging and social.

We also provide three new models for ACCENTOR explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.

Automatic and human evaluations show that, compared with the state of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.

For more details, please refer to this paper.

Data

  • v1.0/candidates-{sgd,multiwoz}.json: Annotated chit-chat candidates. The format is as follows.
{
 "dialogue 1 / id": [
  [
   dialogue 1 / candidate 1 / turn id,
   dialogue 1 / candidate 1 / position,
   dialogue 1 / candidate 1 / candidate,
   dialogue 1 / candidate 1 / label,
   dialogue 1 / candidate 1 / justification
  ],
  [
   dialogue 1 / candidate 2 / turn id,
   ...
  ],
  ...
 ],
 "dialogue 2 / id": [
  ...
 ],
 ...
}
  • Folder v1.0/accentor-sgd: The augmented SGD dataset. The format follows the original SGD dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The folder is generated by v1.0/accentor-sgd.py (with v1.0/candidates-sgd.json and the original SGD dataset as input). Usage: python3 v1.0/accentor-sgd.py --help.
  • v1.0/accentor-multiwoz-1k.json: 1K augmented MultiWOZ 2.1 dialogues. The format follows the original MultiWOZ dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The file is generated by v1.0/accentor-multiwoz.py (with v1.0/candidates-multiwoz.json and the original MultiWOZ 2.1 dataset as input). Usage: python3 v1.0/accentor-multiwoz.py --help.

Baseline Models

Preparation

  • Dependencies: ParlAI (af12799a) and Transformers (2.11.0)

  • Run the following commands to prepare the data for model training and the off-the-shelf models (i.e., a task-oriented dialogue model and a chit-chat model) for Arranger and Rewriter.

cp -r ./v1.0/accentor-sgd .

python3 gen_delex.py

python3 gen_parlai_data.py

parlai train_model -t fromfile:parlaiformat --fromfile_datapath ./parlai --fromfile-datatype-extension true  -m transformer/generator --init-model zoo:tutorial_transformer_generator/model --dict-file zoo:tutorial_transformer_generator/model.dict --embedding-size 512 --n-layers 8 --ffn-size 2048 --dropout 0.1 --n-heads 16 --learn-positional-embeddings True --n-positions 512 --variant xlm --activation gelu --skip-generation True --fp16 True --text-truncate 512 --label-truncate 128 --dict-tokenizer bpe --dict-lower True -lr 1e-06 --optimizer adamax --lr-scheduler reduceonplateau --gradient-clip 0.1 -veps 0.25 --betas 0.9,0.999 --update-freq 1 --attention-dropout 0.0 --relu-dropout 0.0 --skip-generation True -vp 15 -stim 60 -vme 20000 -bs 16 -vmt ppl -vmm min --save-after-valid True --model-file ./train_90M

parlai interactive -mf ./train_90M < lm.input.dev.cc.txt > lm.output.dev.cc.txt

parlai interactive -mf ./train_90M < lm.input.test.cc.txt > lm.output.test.cc.txt

python3 run_language_modeling.py --output_dir=output_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.txt --do_eval  --eval_data_file=lm.input.dev.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

SimpleTOD+

  • Dependency: Transformers (2.11.0)
python3 run_language_modeling.py --output_dir=output_both_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.both.txt --do_eval  --eval_data_file=lm.input.dev.both.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Arranger

  • Dependency: Transformers (2.2.0)
python3 gen_arranger_input.py

python3 run_multiple_choice.py --model_type roberta --task_name acc --model_name_or_path roberta-base --do_train --do_eval --do_test --do_lower_case --data_dir . --learning_rate 2e-5 --num_train_epochs 3 --max_seq_length 512 --output_dir acc_arranger_roberta_base_3epoch --per_gpu_eval_batch_size=16 --per_gpu_train_batch_size=1 --gradient_accumulation_steps 24 --overwrite_output --save_steps 10000

python3 gen_arranger_output.py

Rewriter

  • Dependency: Transformers 2.11.0
python3 gen_rewriter_data.py

python3 run_language_modeling.py --output_dir=output_ff_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.ff.txt  --do_eval --eval_data_file=lm.input.dev.ff.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.ff.txt --output dev.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.ff.txt --output test.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Evaluation

  • Dependency: the official evaluation script of SGD

  • Pass the output inference files (i.e., {dev,test}.inference*.json) to gen_predict.py to obtain act-slot F1 and BLEU-4 scores. For example,

python3 gen_predict.py --inference test.inference.both_gpt2_10epoch_1e-3_fp16.json --split test
  • The above command will also generate a folder (named ./prediction/ by default), which can be passed to the official evaluation script of SGD to obtain the joint goal accuracy and average accuracy. For example,
python3 -m schema_guided_dst.evaluate --dstc8_data_dir ./simpletod/ --prediction_dir ./prediction/test/ --eval_set test --output_metric_file simpletod+_test_result.json

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following article (pdf):

@inproceedings{sun2020adding,
  title={Adding Chit-Chat to Enhance Task-Oriented Dialogues},
  author={Sun, Kai and Moon, Seungwhan and Crook, Paul and Roller, Stephen and Silvert, Becka and Liu, Bing and Wang, Zhiguang and Liu, Honglei and Cho, Eunjoon and Cardie, Claire},
  booktitle={Proceedings of the NAACL-HLT},
  year={2021},
  url={https://arxiv.org/abs/2010.12757}
}

License

ACCENTOR is released under CC-BY-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023