Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Overview

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Build Status

By Andres Milioto @ University of Bonn.

(for the new Pytorch version, go here)

Image of cityscapes Cityscapes Urban Scene understanding.

Image of Persons Person Segmentation

Image of cwc Crop vs. Weed Semantic Segmentation.

Description

This code provides a framework to easily add architectures and datasets, in order to train and deploy CNNs for a robot. It contains a full training pipeline in python using Tensorflow and OpenCV, and it also some C++ apps to deploy a frozen protobuf in ROS and standalone. The C++ library is made in a way which allows to add other backends (such as TensorRT and MvNCS), but only Tensorflow and TensorRT are implemented for now. For now, we will keep it this way because we are mostly interested in deployment for the Jetson and Drive platforms, but if you have a specific need, we accept pull requests!

The networks included is based of of many other architectures (see below), but not exactly a copy of any of them. As seen in the videos, they run very fast in both GPU and CPU, and they are designed with performance in mind, at the cost of a slight accuracy loss. Feel free to use it as a model to implement your own architecture.

All scripts have been tested on the following configurations:

  • x86 Ubuntu 16.04 with an NVIDIA GeForce 940MX GPU (nvidia-384, CUDA9, CUDNN7, TF 1.7, TensorRT3)
  • x86 Ubuntu 16.04 with an NVIDIA GTX1080Ti GPU (nvidia-375, CUDA9, CUDNN7, TF 1.7, TensorRT3)
  • x86 Ubuntu 16.04 and 14.04 with no GPU (TF 1.7, running on CPU in NHWC mode, no TensorRT support)
  • Jetson TX2 (full Jetpack 3.2)

We also provide a Dockerfile to make it easy to run without worrying about the dependencies, which is based on the official nvidia/cuda image containing cuda9 and cudnn7. In order to build and run this image with support for X11 (to display the results), you can run this in the repo root directory (nvidia-docker should be used instead of vainilla docker):

  $ docker pull tano297/bonnet:cuda9-cudnn7-tf17-trt304
  $ nvidia-docker build -t bonnet .
  $ nvidia-docker run -ti --rm -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v $HOME/.Xauthority:/home/developer/.Xauthority -v /home/$USER/data:/shared --net=host --pid=host --ipc=host bonnet /bin/bash

-v /home/$USER/data:/share can be replaced to point to wherever you store the data and trained models, in order to include the data inside the container for inference/training.

Deployment

  • /deploy_cpp contains C++ code for deployment on robot of the full pipeline, which takes an image as input and produces the pixel-wise predictions as output, and the color masks (which depend on the problem). It includes both standalone operation which is meant as an example of usage and build, and a ROS node which takes a topic with an image and outputs 2 topics with the labeled mask and the colored labeled mask.

  • Readme here

Training

  • /train_py contains Python code to easily build CNN Graphs in Tensorflow, train, and generate the trained models used for deployment. This way the interface with Tensorflow can use the more complete Python API and we can easily work with files to augment datasets and so on. It also contains some apps for using models, which includes the ability to save and use a frozen protobuf, and to use the network using TensorRT, which reduces the time for inference when using NVIDIA GPUs.

  • Readme here

Pre-trained models

These are some models trained on some sample datasets that you can use with the trainer and deployer, but if you want to take time to write the parsers for another dataset (yaml file with classes and colors + python script to put the data into the standard dataset format) feel free to create a pull request.

If you don't have GPUs and the task is interesting for robots to exploit, I will gladly train it whenever I have some free GPU time in our servers.

  • Cityscapes:

    • 512x256 Link
    • 768x384 Link (inception-like model)
    • 768x384 Link (mobilenets-like model)
    • 1024x512 Link
  • Synthia:

  • Persons (+coco people):

  • Crop-Weed (CWC):

License

This software

Bonnet is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Bonnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Pretrained models

The pretrained models with a specific dataset keep the copyright of such dataset.

Citation

If you use our framework for any academic work, please cite its paper.

@InProceedings{milioto2019icra,
author = {A. Milioto and C. Stachniss},
title = {{Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics using CNNs}},
booktitle = {Proc. of the IEEE Intl. Conf. on Robotics \& Automation (ICRA)},
year = 2019,
codeurl = {https://github.com/Photogrammetry-Robotics-Bonn/bonnet},
videourl = {https://www.youtube.com/watch?v=tfeFHCq6YJs},
}

Our networks are strongly based on the following architectures, so if you use them for any academic work, please give a look at their papers and cite them if you think proper:

Other useful GitHub's:

  • OpenAI Checkpointed Gradients. Useful implementation of checkpointed gradients to be able to fit big models in GPU memory without sacrificing runtime.
  • Queueing tool: Very nice queueing tool to share GPU, CPU and Memory resources in a multi-GPU environment.
  • Tensorflow_cc: Very useful repo to compile Tensorflow either as a shared or static library using CMake, in order to be able to compile our C++ apps against it.

Contributors

Milioto, Andres

Special thanks to Philipp Lottes for all the work shared during the last year, and to Olga Vysotka and Susanne Wenzel for beta testing the framework :)

Acknowledgements

This work has partly been supported by the German Research Foundation under Germany's Excellence Strategy, EXC-2070 - 390732324 (PhenoRob). We also thank NVIDIA Corporation for providing a Quadro P6000 GPU partially used to develop this framework.

TODOs

  • Merge Crop-weed CNN with background knowledge into this repo.
  • Make multi-camera ROS node that exploits batching to make inference faster than sequentially.
  • Movidius Neural Stick C++ backends (plus others as they become available).
  • Inference node to show the classes selectively (e.g. with some qt visual GUI)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022