Python interface for the DIGIT tactile sensor

Overview

DIGIT-INTERFACE

License: CC BY-NC 4.0 PyPI DIGIT-logo

Python interface for the DIGIT tactile sensor.

For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org community.

Installation

The preferred way of installation is through PyPi:

pip install digit-interface

Alternatively, you can manually clone the repository and install the package using:

git clone https://github.com/facebookresearch/digit-interface.git 
cd digit-interface
pip install -r requirements.txt
python setup.py install

If you cannot access the device by serial number on your system follow adding DIGIT udev Rule

Usage

The default connection method to the DIGIT tactile sensor is through the unique device serial number. The serial number is found on the back of each DIGIT. See List all connected DIGIT's to find device serial numbers which are connected to the host.

Once you have the device serial number, reading data from the sensor should be as easy as

from digit_interface.digit import Digit
 
d = Digit("D12345") # Unique serial number
d.connect()
d.show_view()
d.disconnect()

Upon connection each DIGIT device initializes with a default stream resolution of VGA: 640x480 at 30fps

Further Usage

List all connected DIGIT's:

To list all connected DIGIT's and display sensor information:

from digit_interface.digit_handler import DigitHandler

digits = DigitHandler.list_digits()
Obtain a single frame:
from digit_interface.digit import Digit

d = Digit("D12345") # Unique serial number
d.connect()
frame = d.get_frame()
List supported stream formats:

Additional streams are supported, these streams vary in resolution and frames per second.

To list the available stream formats:

from digit_interface.digit_handler import DigitHandler

print("Supported streams: \n {}".format(DigitHandler.STREAMS))
Change resolution:
d.set_resolution(DigitHandler.STREAMS["QVGA"])
Change FPS,

Based on supported fps for each respective resolution. All streams support pre-defined resolutions which can be found in DigitHandler.STREAMS

d.set_fps(DigitHandler.STREAMS["QVGA"]["fps"]["15fps"])

Adding DIGIT udev Rule

Add your user to the plugdev group,

adduser username plugdev

Copy udev rule,

sudo cp ./udev/50-DIGIT.rules /lib/udev/rules.d/

Reload rules,

sudo udevadm control --reload
sudo udevadm trigger

Replug the DIGIT device into host.

License

This code is licensed under CC-by-NC, as found in the LICENSE file.

Citing

If you use this project in your research, please cite this paper:

@Article{Lambeta2020DIGIT,
  author  = {Lambeta, Mike and Chou, Po-Wei and Tian, Stephen and Yang, Brian and Maloon, Benjamin and Victoria Rose Most and Stroud, Dave and Santos, Raymond and Byagowi, Ahmad and Kammerer, Gregg and Jayaraman, Dinesh and Calandra, Roberto},
  title   = {{DIGIT}: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year    = {2020},
  volume  = {5},
  number  = {3},
  pages   = {3838--3845},
  doi     = {10.1109/LRA.2020.2977257},
}
Owner
Facebook Research
Facebook Research
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022