Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

Related tags

Deep LearningCDFI
Overview

CDFI (Compression-Driven-Frame-Interpolation)

[Paper] (Coming soon...) | [arXiv]

Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

Introduction

We propose a Compression-Driven network design for Frame Interpolation (CDFI), that leverages model compression to significantly reduce the model size (allows a better understanding of the current architecture) while making room for further improvements and achieving superior performance in the end. Concretely, we first compress AdaCoF and show that a 10X compressed AdaCoF performs similarly as its original counterpart; then we improve upon this compressed model with simple modifications. Note that typically it is prohibitive to implement the same improvements on the original heavy model.

  • We achieve a significant performance gain with only a quarter in size compared with the original AdaCoF

    Vimeo-90K Middlebury UCF101-DVF #Params
    PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS
    AdaCoF 34.38, 0.974, 0.019 35.74, 0.979, 0.019 35.20, 0.967, 0.019 21.8M
    Compressed AdaCoF 34.15, 0.973, 0.020 35.46, 0.978, 0.019 35.14, 0.967, 0.019 2.45M
    AdaCoF+ 34.58, 0.975, 0.018 36.12, 0.981, 0.017 35.19, 0.967, 0.019 22.9M
    Compressed AdaCoF+ 34.46, 0.975, 0.019 35.76, 0.979, 0.019 35.16, 0.967, 0.019 2.56M
    Our Final Model 35.19, 0.978, 0.010 37.17, 0.983, 0.008 35.24, 0.967, 0.015 4.98M
  • Our final model also performs favorably against other state-of-the-arts (details refer to our paper)

  • The proposed framework is generic and can be easily transferred to other DNN-based frame interpolation method

The above GIF is a demo of using our method to generate slow motion video, which increases the FPS from 5 to 160. We also provide a long video demonstration here (redirect to YouTube).

Environment

  • CUDA 11.0

  • python 3.8.3

  • torch 1.6.0

  • torchvision 0.7.0

  • cupy 7.7.0

  • scipy 1.5.2

  • numpy 1.19.1

  • Pillow 7.2.0

  • scikit-image 0.17.2

Test Pre-trained Models

Download repository:

$ git clone https://github.com/tding1/CDFI.git
$ cd CDFI/

Testing data

For user convenience, we already provide the Middlebury and UCF101-DVF test datasets in our repository, which can be found under directory test_data/.

Evaluation metrics

We use the built-in functions in skimage.metrics to compute the PSNR and SSIM, for which the higher the better. We also use LPIPS, a newly proposed metric that measures perceptual similarity, for which the smaller the better. For user convenience, we include the implementation of LPIPS in our repo under lpips_pytorch/, which is a slightly modified version of here (with an updated squeezenet backbone).

Test our pre-trained CDFI model

$ python test.py --gpu_id 0

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/cdfi_adacof/.

Test the compressed AdaCoF

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 5 --dilation 1

By default, it will load the compressed AdaCoF model checkpoints/compressed_adacof_F_5_D_1.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_5_D_1/.

Test the compressed AdaCoF+

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 11 --dilation 2

By default, it will load the compressed AdaCoF+ model checkpoints/compressed_adacof_F_11_D_2.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_11_D_2/.

Interpolate two frames

$ python interpolate_twoframe.py --gpu_id 0 --first_frame figs/0.png --second_frame figs/1.png --output_frame output.png

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth, and generate the intermediate frame output.png given two consecutive frames in a sequence.

Train Our Model

Training data

We use the Vimeo-90K triplet dataset for video frame interpolation task, which is relatively large (>32 GB).

$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Start training

$ python train.py --gpu_id 0 --data_dir path/to/vimeo_triplet/ --batch_size 8

It will generate an unique ID for each training, and all the intermediate results/records will be saved under model_weights/<training id>/. For a GPU device with memory around 10GB, the --batch_size can take a value as large as 3, otherwise CUDA may be out of memory. There are many other training options, e.g., --lr, --epochs, --loss and so on, can be found in train.py.

Apply CDFI to New Models

One nice thing about CDFI is that the framework can be easily applied to other (heavy) DNN models and potentially boost their performance. The key to CDFI is the optimization-based compression that compresses a model via fine-grained pruning. In particular, we use the efficient and easy-to-use sparsity-inducing optimizer OBPROXSG (see also paper), and summarize the compression procedure for any other model in the following.

  • Copy the OBPROXSG optimizer, which is already implemented as torch.optim.optimizer, to your working directory
  • Starting from a pre-trained model, finetune its weights by using the OBPROXSG optimizer, like using any standard PyTorch built-in optimizer such as SGD or Adam
    • It is not necessarily to use the full dataset for this finetuning process
  • The parameters for the OBPROXSG optimizer
    • lr: learning rate
    • lambda_: coefficient of the L1 regularization term
    • epochSize: number of batches in a epoch
    • Np: number of proximal steps, which is set to be 2 for pruning AdaCoF
    • No: number of orthant steps (key step to promote sparsity), for which we recommend using the default setting
    • eps: threshold for trimming zeros, which is set to be 0.0001 for pruning AdaCoF
  • After the optimization is done (either by reaching a maximum number of epochs or achieving a high sparsity), use the layer density as the compression ratio for that layer, as described in the paper
  • As an example, compare the architectures in models/adacof.py and model/compressed_adacof.py for compressing AdaCoF with the above procedure

Now it's ready to make further improvements/modifications on the compressed model, based on the understanding of its flaws/drawbacks.

Citation

Coming soon...

Acknowledgements

The code is largely based on HyeongminLEE/AdaCoF-pytorch and baowenbo/DAIN.

Owner
Tianyu Ding
Ph.D. in Applied Mathematics \\ Master in Computer Science
Tianyu Ding
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022