Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

Related tags

Deep LearningCDFI
Overview

CDFI (Compression-Driven-Frame-Interpolation)

[Paper] (Coming soon...) | [arXiv]

Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

Introduction

We propose a Compression-Driven network design for Frame Interpolation (CDFI), that leverages model compression to significantly reduce the model size (allows a better understanding of the current architecture) while making room for further improvements and achieving superior performance in the end. Concretely, we first compress AdaCoF and show that a 10X compressed AdaCoF performs similarly as its original counterpart; then we improve upon this compressed model with simple modifications. Note that typically it is prohibitive to implement the same improvements on the original heavy model.

  • We achieve a significant performance gain with only a quarter in size compared with the original AdaCoF

    Vimeo-90K Middlebury UCF101-DVF #Params
    PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS
    AdaCoF 34.38, 0.974, 0.019 35.74, 0.979, 0.019 35.20, 0.967, 0.019 21.8M
    Compressed AdaCoF 34.15, 0.973, 0.020 35.46, 0.978, 0.019 35.14, 0.967, 0.019 2.45M
    AdaCoF+ 34.58, 0.975, 0.018 36.12, 0.981, 0.017 35.19, 0.967, 0.019 22.9M
    Compressed AdaCoF+ 34.46, 0.975, 0.019 35.76, 0.979, 0.019 35.16, 0.967, 0.019 2.56M
    Our Final Model 35.19, 0.978, 0.010 37.17, 0.983, 0.008 35.24, 0.967, 0.015 4.98M
  • Our final model also performs favorably against other state-of-the-arts (details refer to our paper)

  • The proposed framework is generic and can be easily transferred to other DNN-based frame interpolation method

The above GIF is a demo of using our method to generate slow motion video, which increases the FPS from 5 to 160. We also provide a long video demonstration here (redirect to YouTube).

Environment

  • CUDA 11.0

  • python 3.8.3

  • torch 1.6.0

  • torchvision 0.7.0

  • cupy 7.7.0

  • scipy 1.5.2

  • numpy 1.19.1

  • Pillow 7.2.0

  • scikit-image 0.17.2

Test Pre-trained Models

Download repository:

$ git clone https://github.com/tding1/CDFI.git
$ cd CDFI/

Testing data

For user convenience, we already provide the Middlebury and UCF101-DVF test datasets in our repository, which can be found under directory test_data/.

Evaluation metrics

We use the built-in functions in skimage.metrics to compute the PSNR and SSIM, for which the higher the better. We also use LPIPS, a newly proposed metric that measures perceptual similarity, for which the smaller the better. For user convenience, we include the implementation of LPIPS in our repo under lpips_pytorch/, which is a slightly modified version of here (with an updated squeezenet backbone).

Test our pre-trained CDFI model

$ python test.py --gpu_id 0

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/cdfi_adacof/.

Test the compressed AdaCoF

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 5 --dilation 1

By default, it will load the compressed AdaCoF model checkpoints/compressed_adacof_F_5_D_1.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_5_D_1/.

Test the compressed AdaCoF+

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 11 --dilation 2

By default, it will load the compressed AdaCoF+ model checkpoints/compressed_adacof_F_11_D_2.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_11_D_2/.

Interpolate two frames

$ python interpolate_twoframe.py --gpu_id 0 --first_frame figs/0.png --second_frame figs/1.png --output_frame output.png

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth, and generate the intermediate frame output.png given two consecutive frames in a sequence.

Train Our Model

Training data

We use the Vimeo-90K triplet dataset for video frame interpolation task, which is relatively large (>32 GB).

$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Start training

$ python train.py --gpu_id 0 --data_dir path/to/vimeo_triplet/ --batch_size 8

It will generate an unique ID for each training, and all the intermediate results/records will be saved under model_weights/<training id>/. For a GPU device with memory around 10GB, the --batch_size can take a value as large as 3, otherwise CUDA may be out of memory. There are many other training options, e.g., --lr, --epochs, --loss and so on, can be found in train.py.

Apply CDFI to New Models

One nice thing about CDFI is that the framework can be easily applied to other (heavy) DNN models and potentially boost their performance. The key to CDFI is the optimization-based compression that compresses a model via fine-grained pruning. In particular, we use the efficient and easy-to-use sparsity-inducing optimizer OBPROXSG (see also paper), and summarize the compression procedure for any other model in the following.

  • Copy the OBPROXSG optimizer, which is already implemented as torch.optim.optimizer, to your working directory
  • Starting from a pre-trained model, finetune its weights by using the OBPROXSG optimizer, like using any standard PyTorch built-in optimizer such as SGD or Adam
    • It is not necessarily to use the full dataset for this finetuning process
  • The parameters for the OBPROXSG optimizer
    • lr: learning rate
    • lambda_: coefficient of the L1 regularization term
    • epochSize: number of batches in a epoch
    • Np: number of proximal steps, which is set to be 2 for pruning AdaCoF
    • No: number of orthant steps (key step to promote sparsity), for which we recommend using the default setting
    • eps: threshold for trimming zeros, which is set to be 0.0001 for pruning AdaCoF
  • After the optimization is done (either by reaching a maximum number of epochs or achieving a high sparsity), use the layer density as the compression ratio for that layer, as described in the paper
  • As an example, compare the architectures in models/adacof.py and model/compressed_adacof.py for compressing AdaCoF with the above procedure

Now it's ready to make further improvements/modifications on the compressed model, based on the understanding of its flaws/drawbacks.

Citation

Coming soon...

Acknowledgements

The code is largely based on HyeongminLEE/AdaCoF-pytorch and baowenbo/DAIN.

Owner
Tianyu Ding
Ph.D. in Applied Mathematics \\ Master in Computer Science
Tianyu Ding
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023