Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

Related tags

Deep LearningCDFI
Overview

CDFI (Compression-Driven-Frame-Interpolation)

[Paper] (Coming soon...) | [arXiv]

Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

Introduction

We propose a Compression-Driven network design for Frame Interpolation (CDFI), that leverages model compression to significantly reduce the model size (allows a better understanding of the current architecture) while making room for further improvements and achieving superior performance in the end. Concretely, we first compress AdaCoF and show that a 10X compressed AdaCoF performs similarly as its original counterpart; then we improve upon this compressed model with simple modifications. Note that typically it is prohibitive to implement the same improvements on the original heavy model.

  • We achieve a significant performance gain with only a quarter in size compared with the original AdaCoF

    Vimeo-90K Middlebury UCF101-DVF #Params
    PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS
    AdaCoF 34.38, 0.974, 0.019 35.74, 0.979, 0.019 35.20, 0.967, 0.019 21.8M
    Compressed AdaCoF 34.15, 0.973, 0.020 35.46, 0.978, 0.019 35.14, 0.967, 0.019 2.45M
    AdaCoF+ 34.58, 0.975, 0.018 36.12, 0.981, 0.017 35.19, 0.967, 0.019 22.9M
    Compressed AdaCoF+ 34.46, 0.975, 0.019 35.76, 0.979, 0.019 35.16, 0.967, 0.019 2.56M
    Our Final Model 35.19, 0.978, 0.010 37.17, 0.983, 0.008 35.24, 0.967, 0.015 4.98M
  • Our final model also performs favorably against other state-of-the-arts (details refer to our paper)

  • The proposed framework is generic and can be easily transferred to other DNN-based frame interpolation method

The above GIF is a demo of using our method to generate slow motion video, which increases the FPS from 5 to 160. We also provide a long video demonstration here (redirect to YouTube).

Environment

  • CUDA 11.0

  • python 3.8.3

  • torch 1.6.0

  • torchvision 0.7.0

  • cupy 7.7.0

  • scipy 1.5.2

  • numpy 1.19.1

  • Pillow 7.2.0

  • scikit-image 0.17.2

Test Pre-trained Models

Download repository:

$ git clone https://github.com/tding1/CDFI.git
$ cd CDFI/

Testing data

For user convenience, we already provide the Middlebury and UCF101-DVF test datasets in our repository, which can be found under directory test_data/.

Evaluation metrics

We use the built-in functions in skimage.metrics to compute the PSNR and SSIM, for which the higher the better. We also use LPIPS, a newly proposed metric that measures perceptual similarity, for which the smaller the better. For user convenience, we include the implementation of LPIPS in our repo under lpips_pytorch/, which is a slightly modified version of here (with an updated squeezenet backbone).

Test our pre-trained CDFI model

$ python test.py --gpu_id 0

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/cdfi_adacof/.

Test the compressed AdaCoF

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 5 --dilation 1

By default, it will load the compressed AdaCoF model checkpoints/compressed_adacof_F_5_D_1.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_5_D_1/.

Test the compressed AdaCoF+

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 11 --dilation 2

By default, it will load the compressed AdaCoF+ model checkpoints/compressed_adacof_F_11_D_2.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_11_D_2/.

Interpolate two frames

$ python interpolate_twoframe.py --gpu_id 0 --first_frame figs/0.png --second_frame figs/1.png --output_frame output.png

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth, and generate the intermediate frame output.png given two consecutive frames in a sequence.

Train Our Model

Training data

We use the Vimeo-90K triplet dataset for video frame interpolation task, which is relatively large (>32 GB).

$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Start training

$ python train.py --gpu_id 0 --data_dir path/to/vimeo_triplet/ --batch_size 8

It will generate an unique ID for each training, and all the intermediate results/records will be saved under model_weights/<training id>/. For a GPU device with memory around 10GB, the --batch_size can take a value as large as 3, otherwise CUDA may be out of memory. There are many other training options, e.g., --lr, --epochs, --loss and so on, can be found in train.py.

Apply CDFI to New Models

One nice thing about CDFI is that the framework can be easily applied to other (heavy) DNN models and potentially boost their performance. The key to CDFI is the optimization-based compression that compresses a model via fine-grained pruning. In particular, we use the efficient and easy-to-use sparsity-inducing optimizer OBPROXSG (see also paper), and summarize the compression procedure for any other model in the following.

  • Copy the OBPROXSG optimizer, which is already implemented as torch.optim.optimizer, to your working directory
  • Starting from a pre-trained model, finetune its weights by using the OBPROXSG optimizer, like using any standard PyTorch built-in optimizer such as SGD or Adam
    • It is not necessarily to use the full dataset for this finetuning process
  • The parameters for the OBPROXSG optimizer
    • lr: learning rate
    • lambda_: coefficient of the L1 regularization term
    • epochSize: number of batches in a epoch
    • Np: number of proximal steps, which is set to be 2 for pruning AdaCoF
    • No: number of orthant steps (key step to promote sparsity), for which we recommend using the default setting
    • eps: threshold for trimming zeros, which is set to be 0.0001 for pruning AdaCoF
  • After the optimization is done (either by reaching a maximum number of epochs or achieving a high sparsity), use the layer density as the compression ratio for that layer, as described in the paper
  • As an example, compare the architectures in models/adacof.py and model/compressed_adacof.py for compressing AdaCoF with the above procedure

Now it's ready to make further improvements/modifications on the compressed model, based on the understanding of its flaws/drawbacks.

Citation

Coming soon...

Acknowledgements

The code is largely based on HyeongminLEE/AdaCoF-pytorch and baowenbo/DAIN.

Owner
Tianyu Ding
Ph.D. in Applied Mathematics \\ Master in Computer Science
Tianyu Ding
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022