CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

Overview

This is the official repository of the paper:

CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability


A private copy of the paper is available under CR-FIQA


CR-FIQA training

  1. In the paper, we employ MS1MV2 as the training dataset for CR-FIQA(L) which can be downloaded from InsightFace (MS1M-ArcFace in DataZoo)
    1. Download MS1MV2 dataset from insightface on strictly follow the licence distribution
  2. We use CASIA-WebFace as the training dataset for CR-FIQA(S) which can be downloaded from InsightFace (CASIA in DataZoo)
    1. Download CASIA dataset from insightface on strictly follow the licence distribution
  3. Unzip the dataset and place it in the data folder
  4. Intall the requirement from requirement.txt
  5. pip install -r requirements.txt
  6. All code are trained and tested using PyTorch 1.7.1 Details are under (Torch)[https://pytorch.org/get-started/locally/]

CR-FIQA(L)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet100"
  3. config.dataset = "emoreIresNet"
  4. Run ./run.sh

CR-FIQA(S)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet50"
  3. config.dataset = "webface"
  4. Run ./run.sh

Pretrained model

CR-FIQA(L)

CR-FIQA(S)

Evaluation

Follow these steps to reproduce the results on XQLFW:

  1. Download the XQLFW (please download xqlfw_aligned_112.zip)
  2. Unzip XQLFW (Folder structure should look like this ./data/XQLFW/xqlfw_aligned_112/)
  3. Download also xqlfw_pairs.txt to ./data/XQLFW/xqlfw_pairs.txt
  4. Set (in feature_extraction/extract_xqlfw.py) path = "./data/XQLFW" to your XQLFW data folder and outpath = "./data/quality_data" where you want to save the preprocessed data
  5. Run python extract_xqlfw.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  6. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

The quality score of LFW, AgeDB-30, CFP-FP, CALFW, CPLFW can be produced by following these steps:

  1. LFW, AgeDB-30, CFP-FP, CALFW, CPLFW are be included in the training dataset folder insightface
  2. Set (in extract_bin.py) path = "/data/faces_emore/lfw.bin" to your LFW bin file and outpath = "./data/quality_data" where you want to save the preprocessed data (subfolder will be created)
  3. Run python extract_bin.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  4. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

Ploting ERC curves

  1. Download pretrained model e.g. ElasticFace-Arc, MagFac, CurricularFace or ArcFace
  2. Run CUDA_VISIBLE_DEVICES=0 python feature_extraction/extract_emb.py --model_path ./pretrained/ElasticFace --model_id 295672 --dataset_path "./data/quality_data/XQLFW" --modelname "ElasticFaceModel" 2.1 Note: change the path to pretrained model and other arguments according to the evaluated model
  3. Run python3 ERC/erc.py (details in ERC/README.md)

Citation

If you use any of the code provided in this repository or the models provided, please cite the following paper:

@misc{fboutros_CR_FIQA,
      title={CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability}, 
      author={Fadi Boutros, Meiling Fang, Marcel Klemt, Biying Fu, Naser Damer},
      year={2021},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Fadi Boutros
Fadi Boutros
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021