Repo for flood prediction using LSTMs and HAND

Overview

Abstract

Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in place, decision-makers can take the necessary steps to prevent or at least mitigate the damage caused by floods. Although various flood prediction models exist, a majority of them fail to be fast, reliable, and detailed simultaneously. Our proposed system presents a novel hybrid flood prediction model using Long Short Term Memory(LSTM) for multivariate time series forecasting of water depth based on meteorological conditions and Height Above Nearest Drainage(HAND) to predict river stage in real-time and map the inundated areas for the corresponding water depth using enhanced HAND. Unlike traditional flood forecasting models, this hybrid approach is resource efficient and easy to implement making it highly practicable for real-time flood inundation mapping.

Methodology

The proposed system prioritizes quick development and real-time predictions without compromising on the accuracy. A range of factors affect the occurrences of riverine floods. However, climatological conditions are the major driving force behind them. Factors such as land use/land change and deforestation, although important, only affect flooding in the watershed over a long period of time. Hence, the proposed system used only meteorological conditions and DEM rasters for predicting floods over the next few days.

The relation between weather conditions and flood inundation is simplified by breaking the system into two modules. The first module being estimation of river stage height and the second one being flood inundation mapping. The system uses LSTMs, a data-driven empirical approach, to model the dependence of stage height on meteorological data and HAND, a simplified conceptual approach, to generate flood inundation maps based on the terrain of the watershed and the river stage height predicted by the first module.

Modules :

  1. Inundation Mapping - HAND algorithm to map inundated areas for a given stage height(as proposed in this paper).
  2. River Stage Estimation - Recurring neural networks (LSTMs) to predict the maximum stage height based on weather conditions of the last 3 days.
  3. Deforestation Analysis - Land use classification to identify the changing features of the area over time and identify the areas affected by deforestation.

Datasets

The proposed system uses different data for the three modules. Each of these are collected from different sources and processed separately. The module-wise requirements of data are as follows :

  1. Inundation Mapping:
    1. Digital Elevation Maps from United States Geological Survey
  2. River Stage Estimation:
    1. Meteorological data from National Climatic Data Center
    2. River stage height data from United States Army Corps of Engineers’ river gage data.
  3. Deforestation Analysis:
    1. Satellite images - Landsat 8, Landsat 5 from USGS Earth Explorer

Results

Stage Height Estimation

We tested our proposed system for Cedar Rapids, Iowa. Our experiments showed that features such as vegetation and soil type have little effect on short term flooding and can be disregarded for the prediction module. Testing multiple models showed that single output LSTM models perform better than single shot models. These models are stable upto lead times of 4 days with a Nash-Sutcliffe Efficiency greater than 0.5.

Flood Mapping

Each pixel of the inundation map raster is compared with a reference map created by ground-truthing to identify how many points were incorrectly classified as not flooded. The red areas in the image depict false negatives generated by the proposed system.

Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023