Tensorflow implementation of soft-attention mechanism for video caption generation.

Overview

SA-tensorflow

Tensorflow implementation of soft-attention mechanism for video caption generation.

An example of soft-attention mechanism. The attention weight alpha indicates the temporal attention in one video based on each word.

[Yao et al. 2015 Describing Videos by Exploiting Temporal Structure] The original code implemented in Torch can be found here.

Prerequisites

  • Python 2.7
  • Tensorflow >= 0.7.1
  • NumPy
  • pandas
  • keras
  • java 1.8.0

Data

The MSVD [2] dataset can be download from here.

We pack the data into the format of HDF5, where each file is a mini-batch for training and has the following keys:

[u'data', u'fname', u'label', u'title']

batch['data'] stores the visual features. shape (n_step_lstm, batch_size, hidden_dim)

batch['fname'] stores the filenames(no extension) of videos. shape (batch_size)

batch['title'] stores the description. If there are multiple sentences correspond to one video, the other metadata such as visual features, filenames and labels have to duplicate for one-to-one mapping. shape (batch_size)

batch['label'] indicates where the video ends. For instance, [-1., -1., -1., -1., 0., -1., -1.] means that the video ends at index 4.

shape (n_step_lstm, batch_size)

Generate HDF5 data

We generate the HDF5 data by following the steps below. The codes are a little messy. If you have any questions, feel free to ask.

1. Generate Label

Once you change the video_path and output_path, you can generate labels by running the script:

python hdf5_generator/generate_nolabel.py

I set the length of each clip to 10 frames and the maximum length of frames to 450. You can change the parameters in function get_frame_list(frame_num).

2. Pack features together (no caption information)

Inputs:

label_path: The path for the labels generated earlier.

feature_path: The path that stores features such as VGG and C3D. You can change the directory name whatever you want.

Ouputs:

h5py_path: The path that you store the concatenation of different features, the code will automatically put the features in the subdirectory cont

python hdf5_generator/input_generator.py

Note that in function get_feats_depend_on_label(), you can choose whether to take the mean feature or random sample feature of frames in one clip. The random sample script is commented out since the performance is worse.

3. Add captions into HDF5 data

I set the maxmimum number of words in a caption to 35. feature folder is where our final output features store.

python hdf5_generator/trans_video_youtube.py

(The codes here are written by Kuo-Hao)

Generate data list

video_data_path_train = '$ROOTPATH/SA-tensorflow/examples/train_vn.txt'

You can change the path variable to the absolute path of your data. Then simply run python getlist.py to generate the list.

P.S. The filenames of HDF5 data start with train, val, test.

Usage

training

$ python Att.py --task train

testing

Test the model after a certain number of training epochs.

$ python Att.py --task test --net models/model-20

Author

Tseng-Hung Chen

Kuo-Hao Zeng

Disclaimer

We modified the code from this repository jazzsaxmafia/video_to_sequence to the temporal-attention model.

References

[1] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos by exploiting temporal structure. arXiv:1502.08029v4, 2015.

[2] chen:acl11, title = "Collecting Highly Parallel Data for Paraphrase Evaluation", author = "David L. Chen and William B. Dolan", booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-2011)", address = "Portland, OR", month = "June", year = 2011

[3] Microsoft COCO Caption Evaluation

Owner
Paul Chen
Paul Chen
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022