Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab
Overview
LSTM model trained on a small dataset of 3000 names written in PyTorch
LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"
Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification
Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin
Spatial Contrastive Learning for Few-Shot Classification (SCL)
This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class
AI-based, context-driven network device ranking
Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea
Simple tutorials using Google's TensorFlow Framework
TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.
Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ
PyTorch implementation of neural style randomization for data augmentation
README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net
Magic tool for managing internet connection in local network by @zalexdev
Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m
A simple, fully convolutional model for real-time instance segmentation.
You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs
NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary
Jiminy Cricket Environment (NeurIPS 2021)
Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy
Continual Learning of Electronic Health Records (EHR).
Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)
Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co
Deep functional residue identification
DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in
Implementation of ProteinBERT in Pytorch
ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc